Yoshiteru Ito , Eiji Kimura , Izumi Nomura , Etsurou Watanabe , Jason Yano , Robert Skene , Maki Miyamoto , Tsuyoshi Ishii , Toshiya Nishi , Tatsuki Koike
{"title":"Design and identification of brain-penetrant, potent, and selective 1,3-oxazole-based cholesterol 24-hydroxylase (CH24H) inhibitors","authors":"Yoshiteru Ito , Eiji Kimura , Izumi Nomura , Etsurou Watanabe , Jason Yano , Robert Skene , Maki Miyamoto , Tsuyoshi Ishii , Toshiya Nishi , Tatsuki Koike","doi":"10.1016/j.bmc.2025.118182","DOIUrl":null,"url":null,"abstract":"<div><div>Azole-, pyridine-, and pyrimidine-based cytochrome P450 (CYP) inhibitors strongly bind to CYP enzymes through the coordination between the heme iron of CYP and the sp2-nitrogen atoms of heteroaromatic rings, providing potent pharmacological effects by inhibiting the initiation of the catalytic cycles of target CYP enzymes. Although imidazole-, 1,2,4-triazole-, pyridine-, and pyrimidine-based CYP inhibitors have been widely explored, 1,3-oxazole-based CYP inhibitors have received little attention. In this study, we designed and identified novel 1,3-oxazole-based inhibitors of cholesterol 24- hydroxylase (CH24H; CYP46A1), a brain-specific enzyme involved in cholesterol catabolism, to form 24S-hydroxycholesterol. Detailed insights into the CH24H–ligand interactions were provided by the crystal structures of 1,3-oxazole compounds, including high-throughput screening hit 2 and rationally designed inhibitor 3f. Optimization of 3f led to the identification of 1,3-oxazole derivative 4 l as a potent, selective, and brain-penetrable CH24H inhibitor that significantly reduced 24HC levels in the mouse brain. The design of 1,3-oxazole-based CYP inhibitors holds the potential for the discovery of novel inhibitors with significant potency against a broad spectrum of CYP enzymes.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"124 ","pages":"Article 118182"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089625001233","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Azole-, pyridine-, and pyrimidine-based cytochrome P450 (CYP) inhibitors strongly bind to CYP enzymes through the coordination between the heme iron of CYP and the sp2-nitrogen atoms of heteroaromatic rings, providing potent pharmacological effects by inhibiting the initiation of the catalytic cycles of target CYP enzymes. Although imidazole-, 1,2,4-triazole-, pyridine-, and pyrimidine-based CYP inhibitors have been widely explored, 1,3-oxazole-based CYP inhibitors have received little attention. In this study, we designed and identified novel 1,3-oxazole-based inhibitors of cholesterol 24- hydroxylase (CH24H; CYP46A1), a brain-specific enzyme involved in cholesterol catabolism, to form 24S-hydroxycholesterol. Detailed insights into the CH24H–ligand interactions were provided by the crystal structures of 1,3-oxazole compounds, including high-throughput screening hit 2 and rationally designed inhibitor 3f. Optimization of 3f led to the identification of 1,3-oxazole derivative 4 l as a potent, selective, and brain-penetrable CH24H inhibitor that significantly reduced 24HC levels in the mouse brain. The design of 1,3-oxazole-based CYP inhibitors holds the potential for the discovery of novel inhibitors with significant potency against a broad spectrum of CYP enzymes.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.