{"title":"Sequential data assimilation for PDEs using shape-morphing solutions","authors":"Zachary T. Hilliard, Mohammad Farazmand","doi":"10.1016/j.jcp.2025.113994","DOIUrl":null,"url":null,"abstract":"<div><div>Shape-morphing solutions (also known as evolutional deep neural networks, reduced-order nonlinear solutions, and neural Galerkin schemes) are a new class of methods for approximating the solution of time-dependent partial differential equations (PDEs). Here, we introduce a sequential data assimilation method for incorporating observational data in a shape-morphing solution (SMS). Our method takes the form of a predictor-corrector scheme, where the observations are used to correct the SMS parameters using Newton-like iterations. Between observation points, the SMS equations—a set of ordinary differential equations— are used to evolve the solution forward in time. We prove that, under certain conditions, the data assimilated SMS (DA-SMS) converges uniformly towards the true state of the system. We demonstrate the efficacy of DA-SMS on three examples: the nonlinear Schrödinger equation, the Kuramoto–Sivashinsky equation, and a two-dimensional advection-diffusion equation. Our numerical results suggest that DA-SMS converges with relatively sparse observations and a single iteration of the Newton-like method.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"533 ","pages":"Article 113994"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002773","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Shape-morphing solutions (also known as evolutional deep neural networks, reduced-order nonlinear solutions, and neural Galerkin schemes) are a new class of methods for approximating the solution of time-dependent partial differential equations (PDEs). Here, we introduce a sequential data assimilation method for incorporating observational data in a shape-morphing solution (SMS). Our method takes the form of a predictor-corrector scheme, where the observations are used to correct the SMS parameters using Newton-like iterations. Between observation points, the SMS equations—a set of ordinary differential equations— are used to evolve the solution forward in time. We prove that, under certain conditions, the data assimilated SMS (DA-SMS) converges uniformly towards the true state of the system. We demonstrate the efficacy of DA-SMS on three examples: the nonlinear Schrödinger equation, the Kuramoto–Sivashinsky equation, and a two-dimensional advection-diffusion equation. Our numerical results suggest that DA-SMS converges with relatively sparse observations and a single iteration of the Newton-like method.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.