Fully-discrete nonlinearly-stable flux reconstruction methods for compressible flows

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Carolyn M.V. Pethrick, Siva Nadarajah
{"title":"Fully-discrete nonlinearly-stable flux reconstruction methods for compressible flows","authors":"Carolyn M.V. Pethrick,&nbsp;Siva Nadarajah","doi":"10.1016/j.jcp.2025.113984","DOIUrl":null,"url":null,"abstract":"<div><div>A fully-discrete, nonlinearly-stable flux reconstruction (FD-NSFR) scheme is developed, which ensures robustness through entropy stability in both space and time for high-order flux reconstruction schemes. We extend the entropy-stable flux reconstruction semidiscretization of Cicchino et al. <span><span>[1]</span></span>, <span><span>[2]</span></span>, <span><span>[3]</span></span> with the relaxation Runge Kutta method to construct the FD-NSFR scheme. We focus our study on entropy-stable flux reconstruction methods, which allow a larger time step size than discontinuous Galerkin. In this work, we develop an FD-NSFR scheme that prevents temporal numerical entropy change in the broken Sobolev norm if the governing equations admit a convex entropy function that can be expressed in inner-product form. For governing equations with a general convex numerical entropy function, we develop a method for implementing RRK in a flux reconstruction framework, where the semidiscrete entropy stability property is in the broken Sobolev norm. For such problems, temporal entropy change in the physical <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> norm is prevented. As a result, for general convex numerical entropy, the FD-NSFR scheme achieves fully-discrete entropy stability only when the DG correction function is employed. We use entropy-conserving and entropy-stable test cases for the Burgers', Euler, and Navier-Stokes equations to demonstrate that the FD-NSFR scheme prevents temporal numerical entropy change. The FD-NSFR scheme therefore improves robustness through an entropy stability property, while the flux reconstruction filter allows for larger time steps. We find that the FD-NSFR scheme is able to recover both integrated quantities and solution contours at a higher target time-step size than the semi-discretely entropy-stable scheme, suggesting a robustness advantage for low-Mach turbulence simulations.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"533 ","pages":"Article 113984"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002670","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A fully-discrete, nonlinearly-stable flux reconstruction (FD-NSFR) scheme is developed, which ensures robustness through entropy stability in both space and time for high-order flux reconstruction schemes. We extend the entropy-stable flux reconstruction semidiscretization of Cicchino et al. [1], [2], [3] with the relaxation Runge Kutta method to construct the FD-NSFR scheme. We focus our study on entropy-stable flux reconstruction methods, which allow a larger time step size than discontinuous Galerkin. In this work, we develop an FD-NSFR scheme that prevents temporal numerical entropy change in the broken Sobolev norm if the governing equations admit a convex entropy function that can be expressed in inner-product form. For governing equations with a general convex numerical entropy function, we develop a method for implementing RRK in a flux reconstruction framework, where the semidiscrete entropy stability property is in the broken Sobolev norm. For such problems, temporal entropy change in the physical L2 norm is prevented. As a result, for general convex numerical entropy, the FD-NSFR scheme achieves fully-discrete entropy stability only when the DG correction function is employed. We use entropy-conserving and entropy-stable test cases for the Burgers', Euler, and Navier-Stokes equations to demonstrate that the FD-NSFR scheme prevents temporal numerical entropy change. The FD-NSFR scheme therefore improves robustness through an entropy stability property, while the flux reconstruction filter allows for larger time steps. We find that the FD-NSFR scheme is able to recover both integrated quantities and solution contours at a higher target time-step size than the semi-discretely entropy-stable scheme, suggesting a robustness advantage for low-Mach turbulence simulations.
可压缩流动的全离散非线性稳定通量重建方法
提出了一种全离散、非线性稳定通量重建(FD-NSFR)方案,该方案通过空间和时间上的熵稳定来保证高阶通量重建方案的鲁棒性。将Cicchino et al.[1],[2],[3]的熵稳定通量重建半离散化推广为松弛Runge Kutta方法,构造FD-NSFR格式。本文重点研究了熵稳定通量重建方法,该方法比不连续伽辽金方法允许更大的时间步长。在这项工作中,我们开发了一种FD-NSFR格式,如果控制方程允许可以用内积形式表示的凸熵函数,则该格式可以防止破Sobolev范数中的时间数值熵变化。对于具有一般凸数值熵函数的控制方程,我们开发了一种在通量重建框架中实现RRK的方法,其中半离散熵稳定性性质是在破Sobolev范数中。对于这些问题,物理L2范数的时间熵变化是被阻止的。结果表明,对于一般凸数值熵,FD-NSFR格式只有在采用DG校正函数时才能达到完全离散熵稳定性。我们对Burgers、Euler和Navier-Stokes方程使用熵守恒和熵稳定的测试用例来证明FD-NSFR方案可以防止时间数值熵变化。因此,FD-NSFR方案通过熵稳定性提高了鲁棒性,而通量重建滤波器允许更大的时间步长。我们发现FD-NSFR方案能够在更高的目标时间步长下恢复积分量和解轮廓,这表明FD-NSFR方案在低马赫湍流模拟中具有鲁棒性优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信