Orientation-aware interaction-based deep material network in polycrystalline materials modeling

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Ting-Ju Wei , Tung-Huan Su , Chuin-Shan Chen
{"title":"Orientation-aware interaction-based deep material network in polycrystalline materials modeling","authors":"Ting-Ju Wei ,&nbsp;Tung-Huan Su ,&nbsp;Chuin-Shan Chen","doi":"10.1016/j.cma.2025.117977","DOIUrl":null,"url":null,"abstract":"<div><div>Multiscale simulations are indispensable for connecting microstructural features to the macroscopic behavior of polycrystalline materials, but their high computational demands limit their practicality. Deep material networks (DMNs) have been proposed as efficient surrogate models, yet they fall short of capturing texture evolution. To address this limitation, we propose the orientation-aware interaction-based deep material network (ODMN), which incorporates an orientation-aware mechanism and an interaction mechanism grounded in the Hill–Mandel principle. The orientation-aware mechanism learns the crystallographic textures, while the interaction mechanism captures stress-equilibrium directions among representative volume element (RVE) subregions, offering insight into internal microstructural mechanics. Notably, ODMN requires only linear elastic data for training yet generalizes effectively to complex nonlinear and anisotropic responses. Our results show that ODMN accurately predicts both mechanical responses and texture evolution under complex plastic deformation, thus expanding the applicability of DMNs to polycrystalline materials. By balancing computational efficiency with predictive fidelity, ODMN provides a robust framework for multiscale simulations of polycrystalline materials.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"441 ","pages":"Article 117977"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252500249X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiscale simulations are indispensable for connecting microstructural features to the macroscopic behavior of polycrystalline materials, but their high computational demands limit their practicality. Deep material networks (DMNs) have been proposed as efficient surrogate models, yet they fall short of capturing texture evolution. To address this limitation, we propose the orientation-aware interaction-based deep material network (ODMN), which incorporates an orientation-aware mechanism and an interaction mechanism grounded in the Hill–Mandel principle. The orientation-aware mechanism learns the crystallographic textures, while the interaction mechanism captures stress-equilibrium directions among representative volume element (RVE) subregions, offering insight into internal microstructural mechanics. Notably, ODMN requires only linear elastic data for training yet generalizes effectively to complex nonlinear and anisotropic responses. Our results show that ODMN accurately predicts both mechanical responses and texture evolution under complex plastic deformation, thus expanding the applicability of DMNs to polycrystalline materials. By balancing computational efficiency with predictive fidelity, ODMN provides a robust framework for multiscale simulations of polycrystalline materials.

Abstract Image

多晶材料建模中基于取向感知相互作用的深层材料网络
多尺度模拟是连接多晶材料微观结构特征和宏观行为的必要手段,但其高计算要求限制了其实用性。深度材料网络(DMNs)作为一种有效的替代模型被提出,但它们在捕捉纹理演变方面存在不足。为了解决这一限制,我们提出了基于取向感知相互作用的深层材料网络(ODMN),该网络结合了基于Hill-Mandel原理的取向感知机制和相互作用机制。取向感知机制学习晶体织构,而相互作用机制捕获代表性体积元(RVE)子区域之间的应力平衡方向,从而深入了解内部微观结构力学。值得注意的是,ODMN只需要线性弹性数据进行训练,但可以有效地推广到复杂的非线性和各向异性响应。研究结果表明,ODMN可以准确预测复杂塑性变形下的力学响应和织构演变,从而扩大了dmmn在多晶材料中的适用性。通过平衡计算效率和预测保真度,ODMN为多晶材料的多尺度模拟提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信