Analysis of final size and peak time for SIR epidemic model on simplicial complexes

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ting Xu, Juping Zhang, Zhen Jin
{"title":"Analysis of final size and peak time for SIR epidemic model on simplicial complexes","authors":"Ting Xu,&nbsp;Juping Zhang,&nbsp;Zhen Jin","doi":"10.1016/j.chaos.2025.116390","DOIUrl":null,"url":null,"abstract":"<div><div>The Susceptible–Infected–Recovered <span><math><mrow><mo>(</mo><mi>SIR</mi><mo>)</mo></mrow></math></span> epidemic model based on a simplicial complex is investigated, incorporating higher-order network topology and nonlinear incidence rates. We derive theoretical results for the basic reproduction number, the final size, and the epidemic peak of the mean-field model. Furthermore, we provide a theoretical estimate for the peak time of an epidemic. Numerical simulations reveal that higher-order interactions significantly impact the dynamics of epidemic transmission. Specifically, as the strength of higher-order interactions increases, both the final size and the epidemic peak heighten, while the peak time is shortened. These findings highlight the importance of considering higher-order structures in modeling epidemic spread.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004035","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Susceptible–Infected–Recovered (SIR) epidemic model based on a simplicial complex is investigated, incorporating higher-order network topology and nonlinear incidence rates. We derive theoretical results for the basic reproduction number, the final size, and the epidemic peak of the mean-field model. Furthermore, we provide a theoretical estimate for the peak time of an epidemic. Numerical simulations reveal that higher-order interactions significantly impact the dynamics of epidemic transmission. Specifically, as the strength of higher-order interactions increases, both the final size and the epidemic peak heighten, while the peak time is shortened. These findings highlight the importance of considering higher-order structures in modeling epidemic spread.
简单复合体SIR流行病模型的最终规模和峰值时间分析
研究了基于简单复合体的敏感-感染-恢复(SIR)流行病模型,该模型考虑了高阶网络拓扑和非线性发病率。我们推导了平均场模型的基本再现数、最终规模和流行峰值的理论结果。此外,我们还提供了流行病高峰时间的理论估计。数值模拟表明,高阶相互作用对流行病传播动力学有显著影响。具体而言,随着高阶相互作用强度的增加,最终规模和流行高峰都增大,而高峰时间缩短。这些发现强调了在模拟流行病传播时考虑高阶结构的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信