Multipoint Pollution Localization Method for Surface Water Based on Time-Frequency Analysis

IF 4.8 Q1 ENVIRONMENTAL SCIENCES
Zhixiang Zhang, Qianxuan Zhang, Jieqiang Liu and Qingbo Li*, 
{"title":"Multipoint Pollution Localization Method for Surface Water Based on Time-Frequency Analysis","authors":"Zhixiang Zhang,&nbsp;Qianxuan Zhang,&nbsp;Jieqiang Liu and Qingbo Li*,&nbsp;","doi":"10.1021/acsestwater.4c0098110.1021/acsestwater.4c00981","DOIUrl":null,"url":null,"abstract":"<p >The localization of surface water pollution involves the inversion of source parameters such as positions, amounts, and duration based on monitoring data. This process is crucial for formulating remedial strategies and identifying responsible parties during sudden water pollution incidents. Existing models target single-source localization but fail in multisource scenarios with continuous, mixed discharges, as concentration superposition at monitoring points distorts dispersion models, causing nonunique solutions, significant deviations, and degraded accuracy. This study proposes a time-frequency analysis method to address multipoint surface water pollution source localization under complex scenarios involving instantaneous and continuous discharges, transforming the hydrodynamic inverse problem into a time-domain simulation and frequency-domain optimization framework. It constructs a discrete convolution dynamic equation to uniformly model forward diffusion process. Coupled with the Fourier frequency-domain mapping and the position regularization loss function, the method employs the African Vultures Optimization Algorithm (AVOA) for parallel optimization, achieving high-precision inversion of source parameters for pollution localization. Experimental results demonstrate relative errors below 10% for all parameters in single- and multisource scenarios, and validation on the U.S. Truckee river tracer data set achieved a coefficient of determination (<i>R</i><sup>2</sup>) exceeding 0.95, confirming the method’s reliability for practical applications.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 4","pages":"1640–1651 1640–1651"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The localization of surface water pollution involves the inversion of source parameters such as positions, amounts, and duration based on monitoring data. This process is crucial for formulating remedial strategies and identifying responsible parties during sudden water pollution incidents. Existing models target single-source localization but fail in multisource scenarios with continuous, mixed discharges, as concentration superposition at monitoring points distorts dispersion models, causing nonunique solutions, significant deviations, and degraded accuracy. This study proposes a time-frequency analysis method to address multipoint surface water pollution source localization under complex scenarios involving instantaneous and continuous discharges, transforming the hydrodynamic inverse problem into a time-domain simulation and frequency-domain optimization framework. It constructs a discrete convolution dynamic equation to uniformly model forward diffusion process. Coupled with the Fourier frequency-domain mapping and the position regularization loss function, the method employs the African Vultures Optimization Algorithm (AVOA) for parallel optimization, achieving high-precision inversion of source parameters for pollution localization. Experimental results demonstrate relative errors below 10% for all parameters in single- and multisource scenarios, and validation on the U.S. Truckee river tracer data set achieved a coefficient of determination (R2) exceeding 0.95, confirming the method’s reliability for practical applications.

Abstract Image

基于时频分析的地表水多点污染定位方法
地表水污染的定位涉及到根据监测数据反演污染源的位置、数量、持续时间等参数。这一过程对于在突发水污染事件中制定补救策略和确定责任方至关重要。现有模型的目标是单源定位,但在连续、混合排放的多源场景下无法实现,因为监测点的浓度叠加会扭曲色散模型,导致非唯一解、显著偏差和精度下降。本研究提出了一种时频分析方法来解决瞬态和连续排放复杂场景下多点地表水污染源定位问题,将水动力反问题转化为时域仿真和频域优化框架。构造离散卷积动力学方程,对正向扩散过程进行统一建模。该方法结合傅里叶频域映射和位置正则化损失函数,采用非洲秃鹫优化算法(AVOA)进行并行优化,实现了污染源参数的高精度反演,用于污染定位。实验结果表明,在单源和多源情况下,所有参数的相对误差都在10%以下,在美国特拉基河示踪数据集上的验证获得了超过0.95的决定系数(R2),证实了该方法在实际应用中的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信