Predicting Liquid–Liquid Phase Separation of Submicrometer Proxies for Atmospheric Secondary Aerosol

Qishen Huang, Kiran R. Pitta, Andreas Zuend and Miriam Arak Freedman*, 
{"title":"Predicting Liquid–Liquid Phase Separation of Submicrometer Proxies for Atmospheric Secondary Aerosol","authors":"Qishen Huang,&nbsp;Kiran R. Pitta,&nbsp;Andreas Zuend and Miriam Arak Freedman*,&nbsp;","doi":"10.1021/acsestair.4c0025410.1021/acsestair.4c00254","DOIUrl":null,"url":null,"abstract":"<p >Liquid–liquid phase separation (LLPS) of atmospheric aerosols can significantly impact climate, air quality, and human health. However, their complex composition, small size, and history-dependent properties result in great uncertainty in the modeling of aerosol phase state and atmospheric processes. Herein, using cryogenic transmission electron microscopy (cryo-TEM), we examined model submicron aerosols composed of organic compounds and ammonium sulfate and established a parametrization for the separation relative humidity (SRH) that accounts for chemical composition, particle size, and equilibration time. We evaluated different variables that describe chemical composition: O/C ratio, partition coefficient, solubility, molar mass, and polarizability. The O/C ratio fits the SRH of micrometer droplets best, and by using a scaling factor to translate the micrometer SRH parametrization to submicron aerosols, we incorporate the effects of size and equilibration time. The measured scaling factor for the submicron mean SRH (30 nm–1 μm, 20 min equilibration times) is 0.80, and the factor becomes 1 with equilibration time over 1 h and is equal to 0, meaning that SRH is absent, when the aerosol dry diameter is smaller than 30 nm. Our parametrization will aid in universal SRH modeling, potentially leading to more accurate predictions of aerosol mass, optical properties, hygroscopicity, and heterogeneous chemistry.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 4","pages":"530–539 530–539"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid–liquid phase separation (LLPS) of atmospheric aerosols can significantly impact climate, air quality, and human health. However, their complex composition, small size, and history-dependent properties result in great uncertainty in the modeling of aerosol phase state and atmospheric processes. Herein, using cryogenic transmission electron microscopy (cryo-TEM), we examined model submicron aerosols composed of organic compounds and ammonium sulfate and established a parametrization for the separation relative humidity (SRH) that accounts for chemical composition, particle size, and equilibration time. We evaluated different variables that describe chemical composition: O/C ratio, partition coefficient, solubility, molar mass, and polarizability. The O/C ratio fits the SRH of micrometer droplets best, and by using a scaling factor to translate the micrometer SRH parametrization to submicron aerosols, we incorporate the effects of size and equilibration time. The measured scaling factor for the submicron mean SRH (30 nm–1 μm, 20 min equilibration times) is 0.80, and the factor becomes 1 with equilibration time over 1 h and is equal to 0, meaning that SRH is absent, when the aerosol dry diameter is smaller than 30 nm. Our parametrization will aid in universal SRH modeling, potentially leading to more accurate predictions of aerosol mass, optical properties, hygroscopicity, and heterogeneous chemistry.

Abstract Image

预测大气二次气溶胶亚微米代用物的液-液相分离
大气气溶胶的液-液相分离(LLPS)对气候、空气质量和人类健康具有重要影响。然而,它们的复杂组成、小尺寸和依赖历史的特性导致气溶胶相态和大气过程的模拟存在很大的不确定性。在此,我们使用低温透射电子显微镜(cro - tem)研究了由有机化合物和硫酸铵组成的亚微米气溶胶模型,并建立了分离相对湿度(SRH)的参数化,该参数考虑了化学成分、粒径和平衡时间。我们评估了描述化学成分的不同变量:O/C比、分配系数、溶解度、摩尔质量和极化率。O/C比最适合微米级液滴的SRH,并且通过使用缩放因子将微米级SRH参数转换为亚微米级气溶胶,我们考虑了尺寸和平衡时间的影响。测量到的亚微米平均SRH (30 nm - 1 μm,平衡时间20 min)的标度因子为0.80,当平衡时间超过1 h时,该因子变为1,当气溶胶干直径小于30 nm时,该因子为0,即不存在SRH。我们的参数化将有助于通用SRH建模,可能导致更准确的气溶胶质量、光学性质、吸湿性和非均相化学预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信