A Hybrid Numerical Method Incorporating Machine Learning into Groundwater Level Model for Improving Simulation Accuracy

IF 4.8 Q1 ENVIRONMENTAL SCIENCES
Lin Zhu*, Shuai Li, Huili Gong, Zhenxue Dai, Miao Ye, Chenzhihao Qian and Mohamad Reza Soltanian, 
{"title":"A Hybrid Numerical Method Incorporating Machine Learning into Groundwater Level Model for Improving Simulation Accuracy","authors":"Lin Zhu*,&nbsp;Shuai Li,&nbsp;Huili Gong,&nbsp;Zhenxue Dai,&nbsp;Miao Ye,&nbsp;Chenzhihao Qian and Mohamad Reza Soltanian,&nbsp;","doi":"10.1021/acsestwater.4c0127610.1021/acsestwater.4c01276","DOIUrl":null,"url":null,"abstract":"<p >Groundwater level (GWL) serves as a key indicator for assessing groundwater resources. Traditional numerical models for simulating GWLs typically rely on physics-based approaches, which require detailed descriptions of the hydrogeological structure and the related parameters. The data-driven models, while offering relatively high simulation accuracy, often lack interpretability. This paper proposes a hybrid numerical method framework that integrates a numerical model and a data-driven model to enhance GWL simulation accuracy. The framework is applied to the upper and middle parts of the Chaobai River alluvial fan in Beijing, China, a significant emergency water resource region. This framework is also used to predict landfill infiltration risks. The results indicate that the hybrid model significantly improves the simulation accuracy on the training set, achieving a maximum reduction of 83% in RMSE, 87% in MAE, and a maximum improvement of 56% in <i>R</i><sup>2</sup>, compared to the numerical model alone. During the validation period, 8 of the 11 wells demonstrated an RMSE below 1 m and <i>R</i><sup>2</sup> exceeding 0.85. The prediction results indicate that from 2022 to 2028, even in scenarios with reduced withdrawal or increased precipitation, GWLs will still be below the depth of landfills, which poses no potential risk of groundwater contamination.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 4","pages":"1916–1929 1916–1929"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c01276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater level (GWL) serves as a key indicator for assessing groundwater resources. Traditional numerical models for simulating GWLs typically rely on physics-based approaches, which require detailed descriptions of the hydrogeological structure and the related parameters. The data-driven models, while offering relatively high simulation accuracy, often lack interpretability. This paper proposes a hybrid numerical method framework that integrates a numerical model and a data-driven model to enhance GWL simulation accuracy. The framework is applied to the upper and middle parts of the Chaobai River alluvial fan in Beijing, China, a significant emergency water resource region. This framework is also used to predict landfill infiltration risks. The results indicate that the hybrid model significantly improves the simulation accuracy on the training set, achieving a maximum reduction of 83% in RMSE, 87% in MAE, and a maximum improvement of 56% in R2, compared to the numerical model alone. During the validation period, 8 of the 11 wells demonstrated an RMSE below 1 m and R2 exceeding 0.85. The prediction results indicate that from 2022 to 2028, even in scenarios with reduced withdrawal or increased precipitation, GWLs will still be below the depth of landfills, which poses no potential risk of groundwater contamination.

Abstract Image

基于机器学习的地下水位模型混合数值模拟方法
地下水位(GWL)是评价地下水资源的重要指标。传统的模拟gwl的数值模型通常依赖于基于物理的方法,这需要详细描述水文地质结构和相关参数。数据驱动的模型虽然提供了相对较高的模拟精度,但往往缺乏可解释性。本文提出了一种将数值模型与数据驱动模型相结合的混合数值方法框架,以提高GWL的模拟精度。该框架以北京市潮白河冲积扇中上游为例进行了研究,该地区是中国重要的应急水资源区。该框架也可用于预测垃圾填埋场渗透风险。结果表明,与单独的数值模型相比,混合模型显著提高了训练集上的模拟精度,RMSE最大降低83%,MAE最大降低87%,R2最大提高56%。在验证期间,11口井中有8口的RMSE小于1 m, R2超过0.85。预测结果表明,2022 - 2028年,即使在减少回采或增加降水的情景下,全球水潜值仍将低于填埋场深度,不存在地下水污染的潜在风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信