Single Catalyst with Dynamic Ligands Enabled Synthesis of Olefin Block Copolymers

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lanfei Lu, Yu Li, Chenxiaoning Meng, Kunyu Liu, Yue Yu, Hui Chen, Guoming Liu, Yang Wang
{"title":"Single Catalyst with Dynamic Ligands Enabled Synthesis of Olefin Block Copolymers","authors":"Lanfei Lu, Yu Li, Chenxiaoning Meng, Kunyu Liu, Yue Yu, Hui Chen, Guoming Liu, Yang Wang","doi":"10.1021/jacs.4c18606","DOIUrl":null,"url":null,"abstract":"Olefin block copolymers (OBCs) are among the most advanced classes of polyolefins, produced in large quantities as part of the approximately 200 million tons of polyolefins produced annually. However, current OBCs manufacturing relies on a complex, costly, two-catalyst process that requires hazardous chain shuttling agents. A more efficient approach using a single catalyst for the synthesis of the OBCs is highly desirable but remains significantly challenging. Traditional olefin copolymerization catalysts typically grow a single polymer chain and are incapable of generating block structures as they fail to incorporate α-olefins with the necessary precision. To achieve block copolymerization, the catalyst must simultaneously accomplish two seemingly contradictory tasks, efficiently and inefficiently incorporating α-olefins into the polymer chain. Here, we introduce a new approach for synthesizing OBCs using a single catalyst. By coupling this catalyst with a regulating agent, we enabled a one-step synthesis of OBCs with tunable hard/soft block ratios and high melting temperatures (∼120 °C). This method offers significant advantages, featuring its operational simplicity, elimination of chain shuttling agents, separate comonomer addition, or adjustments in reaction conditions. Mechanistic studies suggest that alkyl chains act as temporary ligands, dynamically influencing the catalyst’s polymerization behavior. This dynamic process allows the catalyst to alternate between efficient and inefficient α-olefin incorporators, thereby facilitating the synthesis of OBCs.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c18606","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Olefin block copolymers (OBCs) are among the most advanced classes of polyolefins, produced in large quantities as part of the approximately 200 million tons of polyolefins produced annually. However, current OBCs manufacturing relies on a complex, costly, two-catalyst process that requires hazardous chain shuttling agents. A more efficient approach using a single catalyst for the synthesis of the OBCs is highly desirable but remains significantly challenging. Traditional olefin copolymerization catalysts typically grow a single polymer chain and are incapable of generating block structures as they fail to incorporate α-olefins with the necessary precision. To achieve block copolymerization, the catalyst must simultaneously accomplish two seemingly contradictory tasks, efficiently and inefficiently incorporating α-olefins into the polymer chain. Here, we introduce a new approach for synthesizing OBCs using a single catalyst. By coupling this catalyst with a regulating agent, we enabled a one-step synthesis of OBCs with tunable hard/soft block ratios and high melting temperatures (∼120 °C). This method offers significant advantages, featuring its operational simplicity, elimination of chain shuttling agents, separate comonomer addition, or adjustments in reaction conditions. Mechanistic studies suggest that alkyl chains act as temporary ligands, dynamically influencing the catalyst’s polymerization behavior. This dynamic process allows the catalyst to alternate between efficient and inefficient α-olefin incorporators, thereby facilitating the synthesis of OBCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信