{"title":"A Survey of Representation Learning, Optimization Strategies, and Applications for Omnidirectional Vision","authors":"Hao Ai, Zidong Cao, Lin Wang","doi":"10.1007/s11263-025-02391-w","DOIUrl":null,"url":null,"abstract":"<p>Omnidirectional image (ODI) data is captured with a field-of-view of <span>\\(360^\\circ \\times 180^\\circ \\)</span>, which is much wider than the pinhole cameras and captures richer surrounding environment details than the conventional perspective images. In recent years, the availability of customer-level <span>\\(360^\\circ \\)</span> cameras has made omnidirectional vision more popular, and the advance of deep learning (DL) has significantly sparked its research and applications. This paper presents a systematic and comprehensive review and analysis of the recent progress of DL for omnidirectional vision. It delineates the distinct challenges and complexities encountered in applying DL to omnidirectional images as opposed to traditional perspective imagery. Our work covers four main contents: (i) A thorough introduction to the principles of omnidirectional imaging and commonly explored projections of ODI; (ii) A methodical review of varied representation learning approaches tailored for ODI; (iii) An in-depth investigation of optimization strategies specific to omnidirectional vision; (iv) A structural and hierarchical taxonomy of the DL methods for the representative omnidirectional vision tasks, from visual enhancement (<i>e</i>.<i>g</i>., image generation and super-resolution) to 3D geometry and motion estimation (<i>e</i>.<i>g</i>., depth and optical flow estimation), alongside the discussions on emergent research directions; (v) An overview of cutting-edge applications (<i>e</i>.<i>g</i>., autonomous driving and virtual reality), coupled with a critical discussion on prevailing challenges and open questions, to trigger more research in the community.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"3 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02391-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Omnidirectional image (ODI) data is captured with a field-of-view of \(360^\circ \times 180^\circ \), which is much wider than the pinhole cameras and captures richer surrounding environment details than the conventional perspective images. In recent years, the availability of customer-level \(360^\circ \) cameras has made omnidirectional vision more popular, and the advance of deep learning (DL) has significantly sparked its research and applications. This paper presents a systematic and comprehensive review and analysis of the recent progress of DL for omnidirectional vision. It delineates the distinct challenges and complexities encountered in applying DL to omnidirectional images as opposed to traditional perspective imagery. Our work covers four main contents: (i) A thorough introduction to the principles of omnidirectional imaging and commonly explored projections of ODI; (ii) A methodical review of varied representation learning approaches tailored for ODI; (iii) An in-depth investigation of optimization strategies specific to omnidirectional vision; (iv) A structural and hierarchical taxonomy of the DL methods for the representative omnidirectional vision tasks, from visual enhancement (e.g., image generation and super-resolution) to 3D geometry and motion estimation (e.g., depth and optical flow estimation), alongside the discussions on emergent research directions; (v) An overview of cutting-edge applications (e.g., autonomous driving and virtual reality), coupled with a critical discussion on prevailing challenges and open questions, to trigger more research in the community.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.