Unique Solvability and Error Analysis of a Scheme Using the Lagrange Multiplier Approach for Gradient Flows

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Qing Cheng, Jie Shen, Cheng Wang
{"title":"Unique Solvability and Error Analysis of a Scheme Using the Lagrange Multiplier Approach for Gradient Flows","authors":"Qing Cheng, Jie Shen, Cheng Wang","doi":"10.1137/24m1659303","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 772-799, April 2025. <br/> Abstract. The unique solvability and error analysis of a scheme using the original Lagrange multiplier approach proposed in [Q. Cheng, C. Liu, and J. Shen, Comput. Methods Appl. Mech. Engrg., 367 (2020), 13070] for gradient flows is studied in this paper. We identify a necessary and sufficient condition that must be satisfied for the nonlinear algebraic equation arising from the original Lagrange multiplier approach to admit a unique solution in the neighborhood of its exact solution. Then we find that the unique solvability of the original Lagrange multiplier approach depends on the aforementioned condition and may be valid over a finite time period. Afterward, we propose a modified Lagrange multiplier approach to ensure that the computation can continue even if the aforementioned condition was not satisfied. Using the Cahn–Hilliard equation as an example, we prove rigorously the unique solvability and establish optimal error estimates of a second-order Lagrange multiplier scheme assuming this condition and that the time step is sufficiently small. We also present numerical results to demonstrate that the modified Lagrange multiplier approach is much more robust and can use a much larger time step than the original Lagrange multiplier approach.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"34 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1659303","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 772-799, April 2025.
Abstract. The unique solvability and error analysis of a scheme using the original Lagrange multiplier approach proposed in [Q. Cheng, C. Liu, and J. Shen, Comput. Methods Appl. Mech. Engrg., 367 (2020), 13070] for gradient flows is studied in this paper. We identify a necessary and sufficient condition that must be satisfied for the nonlinear algebraic equation arising from the original Lagrange multiplier approach to admit a unique solution in the neighborhood of its exact solution. Then we find that the unique solvability of the original Lagrange multiplier approach depends on the aforementioned condition and may be valid over a finite time period. Afterward, we propose a modified Lagrange multiplier approach to ensure that the computation can continue even if the aforementioned condition was not satisfied. Using the Cahn–Hilliard equation as an example, we prove rigorously the unique solvability and establish optimal error estimates of a second-order Lagrange multiplier scheme assuming this condition and that the time step is sufficiently small. We also present numerical results to demonstrate that the modified Lagrange multiplier approach is much more robust and can use a much larger time step than the original Lagrange multiplier approach.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信