{"title":"Pan-cancer human brain metastases atlas at single-cell resolution","authors":"Xudong Xing, Jian Zhong, Jana Biermann, Hao Duan, Xinyu Zhang, Yu Shi, Yixin Gao, Kejun He, Duanyang Zhai, Feng Luo, Yanxing Lai, Feizhe Xiao, Wenying Wang, Mengru Wang, Jianguo Xu, Hao Liu, Jiaze Tang, Liangzhao Chu, Tunan Chen, Edridge K. D’Souza, Fan Bai","doi":"10.1016/j.ccell.2025.03.025","DOIUrl":null,"url":null,"abstract":"Brain metastases (BrMs) remain a major clinical and therapeutic challenge in patients with metastatic cancers. However, advances in our understanding of BrM have been hampered by the constrained sample size and resolution of BrM profiling studies. Here, we perform integrative single-cell RNA sequencing analysis on 108 BrM samples and 111 primary tumor (PTs) samples to investigate the characteristics and remodeling of cell states and composition across cancer lineages and subsets. Recurring and enriched features of malignant cells are increased chromosomal instability, marked proliferative and angiogenic hallmarks, and adoption of a neural-like BrM-associated metaprogram. Immunosuppressive myeloid and stromal subsets dominate the BrM tumor microenvironment, which are associated with poor prognosis and resistance to immunotherapy. Furthermore, five distinct BrM ecotypes are identified, correlating with specific histopathological patterns and clinical characteristics. This work defines hallmarks of BrM biology across cancer types and suggests that shared dependencies may exist, which may be exploited clinically.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"89 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.03.025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Brain metastases (BrMs) remain a major clinical and therapeutic challenge in patients with metastatic cancers. However, advances in our understanding of BrM have been hampered by the constrained sample size and resolution of BrM profiling studies. Here, we perform integrative single-cell RNA sequencing analysis on 108 BrM samples and 111 primary tumor (PTs) samples to investigate the characteristics and remodeling of cell states and composition across cancer lineages and subsets. Recurring and enriched features of malignant cells are increased chromosomal instability, marked proliferative and angiogenic hallmarks, and adoption of a neural-like BrM-associated metaprogram. Immunosuppressive myeloid and stromal subsets dominate the BrM tumor microenvironment, which are associated with poor prognosis and resistance to immunotherapy. Furthermore, five distinct BrM ecotypes are identified, correlating with specific histopathological patterns and clinical characteristics. This work defines hallmarks of BrM biology across cancer types and suggests that shared dependencies may exist, which may be exploited clinically.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.