{"title":"Development and validation of multimodal deep learning algorithms for detecting pulmonary hypertension","authors":"Wei Zhao, Zhihua Huang, Xiaolin Diao, Zhan Yang, Zhihui Zhao, Yun Xia, Qing Zhao, Zhaohong Sun, Qunying Xi, Yanni Huo, Ou Xu, Jiahui Geng, Xin Li, Anqi Duan, Sicheng Zhang, Luyang Gao, Yijia Wang, Sicong Li, Qin Luo, Zhihong Liu","doi":"10.1038/s41746-025-01593-3","DOIUrl":null,"url":null,"abstract":"<p>Transthoracic echocardiography (TTE), commonly used for initial screening of pulmonary hypertension (PH), often lacks sufficient accuracy. To address this gap, we developed and validated a multimodal fusion model for improved PH screening (MMF-PH). The study was registered in the ClinicalTrials.gov (NCT05566002, 09/30/2022). The MMF-PH underwent extensive training, validation, and testing, including comparisons with TTE and evaluations across various patient subgroups to assess robustness and reliability. We analyzed 2451 patients who underwent right heart catheterization, supplemented by a prospective dataset of 477 patients and an external dataset. The MMF-PH demonstrated robust performance across different datasets. The model outperformed TTE in terms of specificity and negative predictive value across all test datasets. An ablation study using the external test dataset confirmed the essential role of each module in the MMF-PH. The MMF-PH significantly advances PH detection, offering robust and reliable diagnostic accuracy across diverse patient populations and clinical settings.</p><figure></figure>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"167 4 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01593-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Transthoracic echocardiography (TTE), commonly used for initial screening of pulmonary hypertension (PH), often lacks sufficient accuracy. To address this gap, we developed and validated a multimodal fusion model for improved PH screening (MMF-PH). The study was registered in the ClinicalTrials.gov (NCT05566002, 09/30/2022). The MMF-PH underwent extensive training, validation, and testing, including comparisons with TTE and evaluations across various patient subgroups to assess robustness and reliability. We analyzed 2451 patients who underwent right heart catheterization, supplemented by a prospective dataset of 477 patients and an external dataset. The MMF-PH demonstrated robust performance across different datasets. The model outperformed TTE in terms of specificity and negative predictive value across all test datasets. An ablation study using the external test dataset confirmed the essential role of each module in the MMF-PH. The MMF-PH significantly advances PH detection, offering robust and reliable diagnostic accuracy across diverse patient populations and clinical settings.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.