{"title":"Enantioselective Catalytic Urech Hydantoin Synthesis","authors":"Wen-Ya Zheng, Zi-Qi Wang, Xing-Zi Li, Zhuo-Chen Li, Hua Wu, Abudu Rexit Abulikemu, Yu-Ping He","doi":"10.1039/d5qo00378d","DOIUrl":null,"url":null,"abstract":"5,5-Dicarbon-substituted hydantoins are the key skeletons of numerous drugs, but a general method for the enantioselective de novo synthesis of such scaffolds is elusive. On the other hand, Urech hydantoin synthesis (UHS) represents an efficient approach for hydantoin preparation, but its enantioselective variant remains unknown. Based on desymmetrization and kinetic resolution strategies, we disclose herein the first example of asymmetric catalytic UHS, providing synthetically challenging thiohydantoins with high stereoselectivities. Readily accessible 2-amino malonic esters and racemic amino esters were employed to react with isothiocyanates in the presence of chiral acids, respectively. The resulting products can be facilely functionalized and serves as pivotal scaffolds in various drugs. Experimental studies and DFT calculations suggest that an unexpected dynamic kinetic resolution in the ester ammonolysis step is responsible for the enantiocontrol.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"25 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qo00378d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
5,5-Dicarbon-substituted hydantoins are the key skeletons of numerous drugs, but a general method for the enantioselective de novo synthesis of such scaffolds is elusive. On the other hand, Urech hydantoin synthesis (UHS) represents an efficient approach for hydantoin preparation, but its enantioselective variant remains unknown. Based on desymmetrization and kinetic resolution strategies, we disclose herein the first example of asymmetric catalytic UHS, providing synthetically challenging thiohydantoins with high stereoselectivities. Readily accessible 2-amino malonic esters and racemic amino esters were employed to react with isothiocyanates in the presence of chiral acids, respectively. The resulting products can be facilely functionalized and serves as pivotal scaffolds in various drugs. Experimental studies and DFT calculations suggest that an unexpected dynamic kinetic resolution in the ester ammonolysis step is responsible for the enantiocontrol.
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.