Zhaopin Su;Zhaofang Weng;Guofu Zhang;Chensi Lian;Niansong Wang
{"title":"LightGBM-Based Audio Watermarking Robust to Recapturing and Hybrid Attacks","authors":"Zhaopin Su;Zhaofang Weng;Guofu Zhang;Chensi Lian;Niansong Wang","doi":"10.1109/TIFS.2025.3559408","DOIUrl":null,"url":null,"abstract":"Digital audio watermarking is a critical technology widely used for copyright protection, content authentication, and broadcast monitoring. However, its robustness is significantly challenged by recapturing and hybrid attacks, which can easily remove watermarks. To address this issue, this work proposes a novel scheme based on the light gradient boosting machine (LightGBM), named LRAW (LightGBM-based Robust Audio Watermarking), which is designed to increase the robustness of audio watermarking against various attacks. Specifically, the scheme begins by analysing coefficients derived from the discrete wavelet transform (DWT), graph-based transform (GBT), and singular value decomposition (SVD). The extracted singular values consistently maintain a stable descending order even under recapturing attacks at a slightly greater distance. Leveraging this stability, the watermark information is implicitly embedded into the audio signal using a quantization rule. To simulate a hybrid attack scenario, a comprehensive feature dataset comprising 396,000 pieces of DWT-GBT-SVD feature data is constructed based on 60 original recordings and 9 types of attack. Furthermore, considering the distinct influences of embedding watermark bits 0 and 1 on the quantization of singular values, the watermark extraction process is formulated as a binary classification problem. LightGBM is trained using Bayesian optimization and the feature dataset to classify the watermark bits accurately. Finally, the complete watermark is recovered using a watermark sequence matching algorithm. Theoretical analysis and experimental results demonstrate that the proposed LRAW scheme outperforms state-of-the-art watermarking methods in robustness against various recapturing and hybrid attacks, even when the distance between the acoustic source and the receiver is considerable.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"4212-4227"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10960334/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Digital audio watermarking is a critical technology widely used for copyright protection, content authentication, and broadcast monitoring. However, its robustness is significantly challenged by recapturing and hybrid attacks, which can easily remove watermarks. To address this issue, this work proposes a novel scheme based on the light gradient boosting machine (LightGBM), named LRAW (LightGBM-based Robust Audio Watermarking), which is designed to increase the robustness of audio watermarking against various attacks. Specifically, the scheme begins by analysing coefficients derived from the discrete wavelet transform (DWT), graph-based transform (GBT), and singular value decomposition (SVD). The extracted singular values consistently maintain a stable descending order even under recapturing attacks at a slightly greater distance. Leveraging this stability, the watermark information is implicitly embedded into the audio signal using a quantization rule. To simulate a hybrid attack scenario, a comprehensive feature dataset comprising 396,000 pieces of DWT-GBT-SVD feature data is constructed based on 60 original recordings and 9 types of attack. Furthermore, considering the distinct influences of embedding watermark bits 0 and 1 on the quantization of singular values, the watermark extraction process is formulated as a binary classification problem. LightGBM is trained using Bayesian optimization and the feature dataset to classify the watermark bits accurately. Finally, the complete watermark is recovered using a watermark sequence matching algorithm. Theoretical analysis and experimental results demonstrate that the proposed LRAW scheme outperforms state-of-the-art watermarking methods in robustness against various recapturing and hybrid attacks, even when the distance between the acoustic source and the receiver is considerable.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features