Enhancing Burn Diagnosis through SE-ResNet18 and Confidence Filtering.

Hanyue Mo, Ziwen Kuang, Haoxuan Wang, Xinyi Cai, Kun Cheng
{"title":"Enhancing Burn Diagnosis through SE-ResNet18 and Confidence Filtering.","authors":"Hanyue Mo, Ziwen Kuang, Haoxuan Wang, Xinyi Cai, Kun Cheng","doi":"10.1007/s10278-025-01495-6","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate classification of burn severity is crucial for effective clinical treatment; however, existing methods often fail to balance precision and real-time performance. To address this challenge, we propose a deep learning-based approach utilizing an enhanced ResNet18 architecture with integrated attention mechanisms to improve classification accuracy. The system consists of data preprocessing, classification, optimization, and post-processing modules. The optimization strategy employs an adaptive learning rate combining cosine annealing and class-specific gradient adaptation, alongside targeted adjustments for class imbalance, while an improved Adam optimizer enhances convergence stability. Post-processing incorporates confidence filtering (threshold 0.3) and selective evaluation, with weighted aggregation-integrating dynamic accuracy calculation and moving average to refine predictions and enhance diagnostic reliability. Experimental results on a burn skin test dataset demonstrate that the proposed model achieves a classification accuracy of 99.19% ± 0.12 and a mean average precision (mAP) of 98.72% ± 0.10, highlighting its potential for real-time clinical burn assessment.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01495-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate classification of burn severity is crucial for effective clinical treatment; however, existing methods often fail to balance precision and real-time performance. To address this challenge, we propose a deep learning-based approach utilizing an enhanced ResNet18 architecture with integrated attention mechanisms to improve classification accuracy. The system consists of data preprocessing, classification, optimization, and post-processing modules. The optimization strategy employs an adaptive learning rate combining cosine annealing and class-specific gradient adaptation, alongside targeted adjustments for class imbalance, while an improved Adam optimizer enhances convergence stability. Post-processing incorporates confidence filtering (threshold 0.3) and selective evaluation, with weighted aggregation-integrating dynamic accuracy calculation and moving average to refine predictions and enhance diagnostic reliability. Experimental results on a burn skin test dataset demonstrate that the proposed model achieves a classification accuracy of 99.19% ± 0.12 and a mean average precision (mAP) of 98.72% ± 0.10, highlighting its potential for real-time clinical burn assessment.

利用SE-ResNet18和置信度滤波增强烧伤诊断。
烧伤严重程度的准确分类对于有效的临床治疗至关重要;然而,现有的方法往往无法平衡精度和实时性。为了解决这一挑战,我们提出了一种基于深度学习的方法,利用增强的ResNet18架构和集成的注意力机制来提高分类精度。该系统由数据预处理、分类、优化和后处理四个模块组成。优化策略采用结合余弦退火和类别梯度自适应的自适应学习率,并对类别不平衡进行有针对性的调整,同时改进的Adam优化器增强了收敛稳定性。后处理采用置信度过滤(阈值0.3)和选择性评估,加权聚合集成动态精度计算和移动平均,以改进预测和提高诊断可靠性。在烧伤皮肤测试数据集上的实验结果表明,该模型的分类准确率为99.19%±0.12,平均精度(mAP)为98.72%±0.10,显示了其在临床烧伤实时评估中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信