Powering the Future: Unveiling the Secrets of Semiconductor Biointerfaces in Biohybrids for Semiartificial Photosynthesis.

Artificial photosynthesis (Washington, D.C.) Pub Date : 2024-08-23 eCollection Date: 2025-01-23 DOI:10.1021/aps.4c00008
Cathal Burns, Elizabeth A Gibson, Linsey Fuller, Shafeer Kalathil
{"title":"Powering the Future: Unveiling the Secrets of Semiconductor Biointerfaces in Biohybrids for Semiartificial Photosynthesis.","authors":"Cathal Burns, Elizabeth A Gibson, Linsey Fuller, Shafeer Kalathil","doi":"10.1021/aps.4c00008","DOIUrl":null,"url":null,"abstract":"<p><p>Developing technology for sustainable chemical and fuel production is a key focus of scientific research. Semiartificial photosynthesis is a promising approach, pairing \"electric microbes\" with artificial light absorbers (semiconductors) to convert N<sub>2</sub>, CO<sub>2</sub>, and water into value-added products using sunlight. Mimicking natural photosynthesis is done with semiconductors acting as electron donors or sinks for microbes. This method enables the production of multicarbon (C<sub>2</sub>+) chemicals (e.g., ethanol and caproic acid) and ammonia with high efficiency and selectivity. Despite significant progress, commercial-scale applications remain elusive due to fundamental challenges. This Review covers advances in semiartificial photosynthesis and highlights that there is no clear mechanistic understanding underpinning the production of chemicals using the combination of light, semiconductors, and microbes. Does the mechanism rely on H<sub>2</sub> uptake, do the microbes eat electrons directly from the light absorbers, or is it a combination of both? It focuses on overcoming bottlenecks using advanced spectroscopy, microscopy, and synthetic biology tools to study charge transfer kinetics between microbial cell membranes and semiconductors. Understanding this interaction is crucial for increasing solar-to-chemical (STC) efficiencies, necessary for industrial use. This Review also outlines future research directions and techniques to advance this field, aiming to achieve net-zero climate goals through multidisciplinary efforts.</p>","PeriodicalId":520501,"journal":{"name":"Artificial photosynthesis (Washington, D.C.)","volume":"1 1","pages":"27-49"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial photosynthesis (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/aps.4c00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing technology for sustainable chemical and fuel production is a key focus of scientific research. Semiartificial photosynthesis is a promising approach, pairing "electric microbes" with artificial light absorbers (semiconductors) to convert N2, CO2, and water into value-added products using sunlight. Mimicking natural photosynthesis is done with semiconductors acting as electron donors or sinks for microbes. This method enables the production of multicarbon (C2+) chemicals (e.g., ethanol and caproic acid) and ammonia with high efficiency and selectivity. Despite significant progress, commercial-scale applications remain elusive due to fundamental challenges. This Review covers advances in semiartificial photosynthesis and highlights that there is no clear mechanistic understanding underpinning the production of chemicals using the combination of light, semiconductors, and microbes. Does the mechanism rely on H2 uptake, do the microbes eat electrons directly from the light absorbers, or is it a combination of both? It focuses on overcoming bottlenecks using advanced spectroscopy, microscopy, and synthetic biology tools to study charge transfer kinetics between microbial cell membranes and semiconductors. Understanding this interaction is crucial for increasing solar-to-chemical (STC) efficiencies, necessary for industrial use. This Review also outlines future research directions and techniques to advance this field, aiming to achieve net-zero climate goals through multidisciplinary efforts.

为未来提供动力:揭示用于半人工光合作用的生物杂化半导体生物界面的秘密。
开发可持续的化学品和燃料生产技术是科学研究的重点。半人工光合作用是一种很有前途的方法,将“电微生物”与人工光吸收剂(半导体)配对,利用阳光将N2、CO2和水转化为增值产品。模仿自然光合作用是用半导体作为电子供体或微生物的汇来完成的。该方法能够高效、选择性地生产多碳(C2+)化学品(如乙醇和己酸)和氨。尽管取得了重大进展,但由于基本挑战,商业规模的应用仍然难以实现。这篇综述涵盖了半人工光合作用的进展,并强调没有明确的机制理解支持利用光、半导体和微生物的组合生产化学品。这个机制是依赖于H2的吸收,微生物是直接从光吸收器中吸收电子,还是两者兼而有之?它的重点是克服瓶颈,使用先进的光谱学,显微镜和合成生物学工具来研究微生物细胞膜和半导体之间的电荷转移动力学。了解这种相互作用对于提高太阳能-化学(STC)效率至关重要,这是工业应用所必需的。本综述还概述了未来的研究方向和技术,以推进这一领域,旨在通过多学科的努力实现净零气候目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信