Electrochemical Flow Reactors: Mass Transport, iR Drop, and Membrane-Free Performance with In-Line Analysis.

ACS electrochemistry Pub Date : 2025-01-14 eCollection Date: 2025-04-03 DOI:10.1021/acselectrochem.4c00167
W J Niels Klement, Elia Savino, Sarah Rooijmans, Patty P M F A Mulder, N Scott Lynn, Wesley R Browne, Elisabeth Verpoorte
{"title":"Electrochemical Flow Reactors: Mass Transport, iR Drop, and Membrane-Free Performance with In-Line Analysis.","authors":"W J Niels Klement, Elia Savino, Sarah Rooijmans, Patty P M F A Mulder, N Scott Lynn, Wesley R Browne, Elisabeth Verpoorte","doi":"10.1021/acselectrochem.4c00167","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous flow reactors are promising for electrochemical conversions, in large part due to the potentially rapid refreshment of reagents over the electrode surface. Microfluidic reactors enable a high degree of control over the fluid flow. Diffusion to and from the electrode and electrode area determine the efficiency of electrochemical conversion. The effective electrode area is limited by the loss in electrode potential due to iR drop, and further electrode length (and hence area) is limited due to ineffective mass transport to and from the electrode. Here, we report on a microfluidic electrochemical device with large (long) area electrodes running in parallel, which both minimizes the iR drop and ensures a constant electrode potential along the whole length of the electrodes. The electrodes are separated by laminar flow in the channels, instead of by a membrane, thereby reducing cell resistance. Herringbone grooves are used to increase mass transport rates by inducing transverse flow. We confirm fluid flow behavior in the devices using computational fluid dynamics (CFD) and verify the results experimentally using in-line and off-line UV/vis absorption and resonance Raman spectroscopy. We anticipate that this approach will aid future development of electrochemical flow reactors, enabling larger area-electrodes and realizing greater efficiencies.</p>","PeriodicalId":520400,"journal":{"name":"ACS electrochemistry","volume":"1 4","pages":"504-515"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acselectrochem.4c00167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous flow reactors are promising for electrochemical conversions, in large part due to the potentially rapid refreshment of reagents over the electrode surface. Microfluidic reactors enable a high degree of control over the fluid flow. Diffusion to and from the electrode and electrode area determine the efficiency of electrochemical conversion. The effective electrode area is limited by the loss in electrode potential due to iR drop, and further electrode length (and hence area) is limited due to ineffective mass transport to and from the electrode. Here, we report on a microfluidic electrochemical device with large (long) area electrodes running in parallel, which both minimizes the iR drop and ensures a constant electrode potential along the whole length of the electrodes. The electrodes are separated by laminar flow in the channels, instead of by a membrane, thereby reducing cell resistance. Herringbone grooves are used to increase mass transport rates by inducing transverse flow. We confirm fluid flow behavior in the devices using computational fluid dynamics (CFD) and verify the results experimentally using in-line and off-line UV/vis absorption and resonance Raman spectroscopy. We anticipate that this approach will aid future development of electrochemical flow reactors, enabling larger area-electrodes and realizing greater efficiencies.

电化学流动反应器:质量传输,iR下降和无膜性能与在线分析。
连续流反应器在电化学转化方面很有前景,这在很大程度上是由于试剂在电极表面的快速更新。微流控反应器能够对流体流动进行高度控制。电极之间和电极区域之间的扩散决定了电化学转化的效率。有效电极面积受限于由iR下降引起的电极电位损失,进一步的电极长度(因此面积)受限于进出电极的无效质量传递。在这里,我们报道了一种大(长)面积电极并联运行的微流控电化学装置,它既可以最小化iR下降,又可以确保沿电极的整个长度保持恒定的电极电位。电极通过通道中的层流而不是膜来分离,从而减少了细胞阻力。人字槽用于通过诱导横向流动来增加质量输运率。我们使用计算流体动力学(CFD)确认了设备中的流体流动行为,并使用在线和离线UV/vis吸收和共振拉曼光谱验证了实验结果。我们预计这种方法将有助于电化学流动反应器的未来发展,实现更大的电极面积和更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信