{"title":"Deep learning-based assessment of pulp involvement in primary molars using YOLO v8.","authors":"Aydin Sohrabi, Nazila Ameli, Masoud Mirimoghaddam, Yuli Berlin-Broner, Hollis Lai, Maryam Amin","doi":"10.1371/journal.pdig.0000816","DOIUrl":null,"url":null,"abstract":"<p><p>Dental caries is a major global public health problem, especially among young children. Rapid decay progression often necessitates pulp treatment, making accurate pulp condition assessment crucial. Despite advances in pulp management techniques, diagnostic methods for assessing pulp involvement have not significantly improved. This study aimed to develop a machine learning (ML) model to diagnose pulp involvement using radiographs of carious primary molars. Clinical charts and bitewing radiographs of 900 children treated from 2018-2022 at the University of Alberta dental clinic were reviewed, yielding a sample of 482 teeth. images were preprocessed, standardized, and labeled based on clinical diagnoses. Data were split into training, validation, and test sets, with data augmentation applied to classify 2 categories of outcomes. The YOLOv8m-cls model architecture included convolutional and classification layers, and performance was evaluated using top-1 and top-5 accuracy metrics. The YOLOv8m-cls model achieved a top-1 accuracy of 78.7% for upper primary molars and 87.8% for lower primary molars. Validation datasets showed higher accuracy for lower primary teeth. Performance on new test images demonstrated precision, recall, accuracy, and F1-scores, highlighting the model's effectiveness in diagnosing pulp involvement, with lower primary molars showing superior results. This study developed a promising CNN model for diagnosing pulp involvement in primary teeth using bitewing radiographs, showing promise for clinical application in pediatric dentistry. Future research should explore whole bitewing images, include clinical variables, and integrate heat maps to enhance the model. This tool could streamline clinical practice, improve informed consent, and assist in dental student training.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 4","pages":"e0000816"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dental caries is a major global public health problem, especially among young children. Rapid decay progression often necessitates pulp treatment, making accurate pulp condition assessment crucial. Despite advances in pulp management techniques, diagnostic methods for assessing pulp involvement have not significantly improved. This study aimed to develop a machine learning (ML) model to diagnose pulp involvement using radiographs of carious primary molars. Clinical charts and bitewing radiographs of 900 children treated from 2018-2022 at the University of Alberta dental clinic were reviewed, yielding a sample of 482 teeth. images were preprocessed, standardized, and labeled based on clinical diagnoses. Data were split into training, validation, and test sets, with data augmentation applied to classify 2 categories of outcomes. The YOLOv8m-cls model architecture included convolutional and classification layers, and performance was evaluated using top-1 and top-5 accuracy metrics. The YOLOv8m-cls model achieved a top-1 accuracy of 78.7% for upper primary molars and 87.8% for lower primary molars. Validation datasets showed higher accuracy for lower primary teeth. Performance on new test images demonstrated precision, recall, accuracy, and F1-scores, highlighting the model's effectiveness in diagnosing pulp involvement, with lower primary molars showing superior results. This study developed a promising CNN model for diagnosing pulp involvement in primary teeth using bitewing radiographs, showing promise for clinical application in pediatric dentistry. Future research should explore whole bitewing images, include clinical variables, and integrate heat maps to enhance the model. This tool could streamline clinical practice, improve informed consent, and assist in dental student training.