{"title":"Pulmonary mitochondrial DNA release and activation of the cGAS-STING pathway in Lethal Stx12 knockout mice.","authors":"Dan-Hua Liu, Fang Li, Run-Zhou Yang, Zhuanbin Wu, Xiao-Yan Meng, Sen-Miao Li, Wen-Xiu Li, Jia-Kang Li, Dian-Dian Wang, Rui-Yu Wang, Shu-Ang Li, Pei-Pei Liu, Jian-Sheng Kang","doi":"10.1186/s12964-025-02141-y","DOIUrl":null,"url":null,"abstract":"<p><p>STX12 (syntaxin12 or syntaxin13), a member of the SNARE protein family, plays a crucial role in intracellular vesicle transport and membrane fusion. Our previous research demonstrated that Stx12 knockout mice exhibit perinatal lethality with iron deficiency anemia. Despite its importance, the comprehensive physiological and pathological mechanism of STX12 remains largely unknown. Here, we revealed that STX12 deficiency causes the depolarization of mitochondrial membrane potential in zebrafish embryos and mouse embryonic fibroblasts. Additionally, the loss of STX12 decreased the levels of mitochondrial complex subunits, accompanied by mitochondrial DNA (mtDNA) release and activated cGAS-STING pathway and Type I interferon pathway in the lung tissue of Stx12<sup>-/-</sup> mice. Additionally, we observed a substantial increase in cytokines and neutrophil infiltration within the lung tissues of Stx12 knockout mice, indicating severe inflammation, which could be a contributing factor for Stx12<sup>-/-</sup> mortality. Various interventions have failed to rescue the lethal phenotype, suggesting that systemic effects may contribute to lethality. Further research is warranted to elucidate potential intervention strategies. Overall, our findings uncover the critical role of STX12 in maintaining mitochondrial function and mtDNA stability in pulmonary cells, and reveal that STX12 depletion results in pulmonary mtDNA release and activates mtDNA-dependent innate immunity.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"174"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02141-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
STX12 (syntaxin12 or syntaxin13), a member of the SNARE protein family, plays a crucial role in intracellular vesicle transport and membrane fusion. Our previous research demonstrated that Stx12 knockout mice exhibit perinatal lethality with iron deficiency anemia. Despite its importance, the comprehensive physiological and pathological mechanism of STX12 remains largely unknown. Here, we revealed that STX12 deficiency causes the depolarization of mitochondrial membrane potential in zebrafish embryos and mouse embryonic fibroblasts. Additionally, the loss of STX12 decreased the levels of mitochondrial complex subunits, accompanied by mitochondrial DNA (mtDNA) release and activated cGAS-STING pathway and Type I interferon pathway in the lung tissue of Stx12-/- mice. Additionally, we observed a substantial increase in cytokines and neutrophil infiltration within the lung tissues of Stx12 knockout mice, indicating severe inflammation, which could be a contributing factor for Stx12-/- mortality. Various interventions have failed to rescue the lethal phenotype, suggesting that systemic effects may contribute to lethality. Further research is warranted to elucidate potential intervention strategies. Overall, our findings uncover the critical role of STX12 in maintaining mitochondrial function and mtDNA stability in pulmonary cells, and reveal that STX12 depletion results in pulmonary mtDNA release and activates mtDNA-dependent innate immunity.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.