Food colorant brilliant blue causes persistent functional and structural changes in an in vitro simplified microbiota model system.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-03-22 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf050
Victor Castañeda-Monsalve, Sven-Bastiaan Haange, Laura-Fabienne Fröhlich, Qiuguo Fu, Ulrike Rolle-Kampczyk, Martin von Bergen, Nico Jehmlich
{"title":"Food colorant brilliant blue causes persistent functional and structural changes in an in vitro simplified microbiota model system.","authors":"Victor Castañeda-Monsalve, Sven-Bastiaan Haange, Laura-Fabienne Fröhlich, Qiuguo Fu, Ulrike Rolle-Kampczyk, Martin von Bergen, Nico Jehmlich","doi":"10.1093/ismeco/ycaf050","DOIUrl":null,"url":null,"abstract":"<p><p>The human gut microbiota plays a vital role in maintaining host health by acting as a barrier against pathogens, supporting the immune system, and metabolizing complex carbon sources into beneficial compounds such as short-chain fatty acids. Brilliant blue E-133 (BB), is a common food dye that is not absorbed or metabolized by the body, leading to substantial exposure of the gut microbiota. Despite this, its effects on the microbiota are not well-documented. In this study, we cultivated the Simplified Human Microbiota Model (SIHUMIx) in a three-stage in vitro approach (stabilization, exposure, and recovery). Using metaproteomic and metabolomic approaches, we observed significant shifts in microbial composition, including an increase in the relative abundance of <i>Bacteroides thetaiotaomicron</i> and a decrease in beneficial species such as <i>Bifidobacterium longum</i> and <i>Clostridium butyricum</i>. We observed lower protein abundance in energy metabolism, metabolic end products, and particularly lactate and butyrate. Disturbance in key metabolic pathways related to energy production, stress response, and amino acid metabolism were also observed, with some pathways affected independently of bacterial abundance. These functional changes persisted during the recovery phase, indicating that the microbiota did not fully return to its pre-exposure state. Our findings suggest that BB has a lasting impact on gut microbiota structure and function, raising concerns about its widespread use in the food industry. This study underscores the need for further research into the long-term effects of food colorants on the gut microbiota and their potential health implications.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf050"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977461/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The human gut microbiota plays a vital role in maintaining host health by acting as a barrier against pathogens, supporting the immune system, and metabolizing complex carbon sources into beneficial compounds such as short-chain fatty acids. Brilliant blue E-133 (BB), is a common food dye that is not absorbed or metabolized by the body, leading to substantial exposure of the gut microbiota. Despite this, its effects on the microbiota are not well-documented. In this study, we cultivated the Simplified Human Microbiota Model (SIHUMIx) in a three-stage in vitro approach (stabilization, exposure, and recovery). Using metaproteomic and metabolomic approaches, we observed significant shifts in microbial composition, including an increase in the relative abundance of Bacteroides thetaiotaomicron and a decrease in beneficial species such as Bifidobacterium longum and Clostridium butyricum. We observed lower protein abundance in energy metabolism, metabolic end products, and particularly lactate and butyrate. Disturbance in key metabolic pathways related to energy production, stress response, and amino acid metabolism were also observed, with some pathways affected independently of bacterial abundance. These functional changes persisted during the recovery phase, indicating that the microbiota did not fully return to its pre-exposure state. Our findings suggest that BB has a lasting impact on gut microbiota structure and function, raising concerns about its widespread use in the food industry. This study underscores the need for further research into the long-term effects of food colorants on the gut microbiota and their potential health implications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信