Telocyte-derived exosomes promote angiogenesis and alleviate acute respiratory distress syndrome via JAK/STAT-miR-221-E2F2 axis.

IF 6.3 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rongrong Gao, Xu Zhang, Huihui Ju, Yile Zhou, Luoyue Yin, Liuke Yang, Pinwen Wu, Xia Sun, Hao Fang
{"title":"Telocyte-derived exosomes promote angiogenesis and alleviate acute respiratory distress syndrome via JAK/STAT-miR-221-E2F2 axis.","authors":"Rongrong Gao, Xu Zhang, Huihui Ju, Yile Zhou, Luoyue Yin, Liuke Yang, Pinwen Wu, Xia Sun, Hao Fang","doi":"10.1186/s43556-025-00259-6","DOIUrl":null,"url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) is characterized by severe respiratory failure and significant inflammation, leading to vascular and epithelial cell damage. The absence of effective pharmacologic treatments underscores the need for novel therapeutic approaches. Telocytes (TCs), a newly identified type of interstitial cells, have shown potential in tissue repair and angiogenesis, particularly through the release of exosomal microRNAs (miRNAs). Exosomes were isolated from LPS (lipopolysaccharide)-stimulated TCs and characterized using western blotting and nanoparticle tracking analysis. The role of exosomal miR-221 in angiogenesis was assessed through tube formation, migration, and proliferation assays in mouse vascular endothelial cells (MVECs). The JAK/STAT pathway's involvement in miR-221 regulation was determined using western blotting and qRT-PCR. A dual-luciferase assay confirmed E2F2 as a direct target of miR-221. ARDS mouse model was established via LPS instillation, and the therapeutic effects of TCs-derived exosomes were evaluated by histopathological scoring, cytokine analysis, and endothelial barrier integrity assays. Our findings demonstrated that exosomes from LPS-stimulated TCs significantly promoted angiogenesis, proliferation, and migration in MVECs. These effects were mediated by miR-221, which downregulated E2F2 expression, an important regulator of endothelial cell functions. The JAK/STAT pathway played a crucial role in miR-221 production, with pathway inhibition reducing miR-221 levels and attenuating its pro-angiogenic effects. In vivo, TCs-derived exosomes reduced lung inflammation and tissue damage in ARDS mice, effects that were reversed by miR-221 inhibition. These results suggested that TCs-derived exosomes promoted angiogenesis and alleviated ARDS through the JAK/STAT-miR-221-E2F2 axis.</p>","PeriodicalId":74218,"journal":{"name":"Molecular biomedicine","volume":"6 1","pages":"21"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43556-025-00259-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute respiratory distress syndrome (ARDS) is characterized by severe respiratory failure and significant inflammation, leading to vascular and epithelial cell damage. The absence of effective pharmacologic treatments underscores the need for novel therapeutic approaches. Telocytes (TCs), a newly identified type of interstitial cells, have shown potential in tissue repair and angiogenesis, particularly through the release of exosomal microRNAs (miRNAs). Exosomes were isolated from LPS (lipopolysaccharide)-stimulated TCs and characterized using western blotting and nanoparticle tracking analysis. The role of exosomal miR-221 in angiogenesis was assessed through tube formation, migration, and proliferation assays in mouse vascular endothelial cells (MVECs). The JAK/STAT pathway's involvement in miR-221 regulation was determined using western blotting and qRT-PCR. A dual-luciferase assay confirmed E2F2 as a direct target of miR-221. ARDS mouse model was established via LPS instillation, and the therapeutic effects of TCs-derived exosomes were evaluated by histopathological scoring, cytokine analysis, and endothelial barrier integrity assays. Our findings demonstrated that exosomes from LPS-stimulated TCs significantly promoted angiogenesis, proliferation, and migration in MVECs. These effects were mediated by miR-221, which downregulated E2F2 expression, an important regulator of endothelial cell functions. The JAK/STAT pathway played a crucial role in miR-221 production, with pathway inhibition reducing miR-221 levels and attenuating its pro-angiogenic effects. In vivo, TCs-derived exosomes reduced lung inflammation and tissue damage in ARDS mice, effects that were reversed by miR-221 inhibition. These results suggested that TCs-derived exosomes promoted angiogenesis and alleviated ARDS through the JAK/STAT-miR-221-E2F2 axis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信