{"title":"[G protein-coupled estrogen receptor alleviates lung injury in mice with exertional heat stroke by inhibiting ferroptosis].","authors":"Ziwei Han, Jiansong Guo, Xiaochen Wang, Zhi Dai, Chao Liu, Feihu Zhou","doi":"10.3760/cma.j.cn121430-20241030-00896","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate whether the G protein-coupled estrogen receptor (GPER) can attenuates acute lung injury in mice with exertional heat stroke (EHS) by inhibiting ferroptosis.</p><p><strong>Methods: </strong>Sixty SPF-grade male C57BL/6 mice were randomly divided into four groups: normal control group (control group), EHS model group (EHS group), dimethyl sulfoxide (DMSO) solvent group (EHS+DMSO group), and GPER-specific agonist G1 group (EHS+G1 group), with 15 mice in each group. All mice underwent 14 days of adaptive training at 24-26 centigrade before modeling, and the EHS model was established using a high-temperature treadmill device. After successful modeling, the mice were allowed to cool naturally at room temperature. In the EHS+G1 group, 40 μg/kg of the GPER-specific agonist G1 was slowly injected intraperitoneally immediately after modeling. In the EHS+DMSO group, 40 μg/kg of DMSO was slowly injected intraperitoneally immediately after modeling. The control group received no treatment. Five hours after modeling, abdominal aortic blood was collected, and lung tissues were harvested after euthanasia. The lung coefficient was calculated to evaluate lung injury. Lung histopathological changes were observed under a light microscope after hematoxylin-eosin (HE) staining, and a lung histopathological score was assigned. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA), and Fe<sup>2+</sup> in lung tissue. Immunofluorescence was used to detect the expression of glutathione peroxidase 4 (GPX4). Real-time polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of GPX4, ferroportin 1 (FPN1), and ferritin heavy chain 1 (FTH1). Western blotting was performed to detect the protein expression of GPX4, FPN1, and FTH1.</p><p><strong>Results: </strong>Compared with the control group, the lung coefficient and lung histopathological score were significantly increased in the EHS group. HE staining showed significant thickening and unevenness of the alveolar septa and alveolar walls, partial alveolar collapse, and extensive erythrocyte, inflammatory cell, and plasma-like material extravasation in the alveolar spaces. Serum levels of TNF-α, IL-1β, MDA, and Fe<sup>2+</sup> were significantly elevated. Immunofluorescence staining showed a significant decrease in GPX4-positive expression in lung tissue. Western blotting and RT-PCR showed significantly reduced protein and mRNA expression of GPX4, FPN1, and FTH1 in lung tissue. Compared with the EHS group, the EHS+G1 group showed a significant reduction in lung coefficient and lung histopathological score [lung coefficient (mg/g): 3.9±0.1 vs. 4.6±0.3, lung histopathological score: 4.2±0.2 vs. 6.9±0.2, both P < 0.05]. HE staining revealed reduced severity of lung tissue fluid extravasation, inflammatory infiltration, decreased hemorrhage, and less severe alveolar structural damage. Serum levels of TNF-α, IL-1β, MDA, and Fe<sup>2+</sup> were significantly reduced [TNF-α (ng/L): 44.3±0.2 vs. 64.6±0.3, IL-1β (ng/L): 69.3±0.4 vs. 97.8±0.2, MDA (nmol/L): 2.8±0.3 vs. 3.6±0.5, Fe<sup>2+</sup> (nmol/L): 0.021±0.004 vs. 0.028±0.004, all P < 0.05]. Immunofluorescence staining showed a significant decrease in GPX4-positive expression in lung tissue (fluorescence intensity: 35.53±2.41 vs. 16.45±0.31, P < 0.05). RT-PCR and Western blotting showed significantly increased mRNA and protein expression of GPX4, FPN1, and FTH1 in lung tissue [mRNA expression: GPX4 mRNA (2<sup>-ΔΔCt</sup>): 0.44±0.05 vs. 0.09±0.01, FPN1 mRNA (2<sup>-ΔΔCt</sup>): 0.77±0.17 vs. 0.42±0.14, FTH1 mRNA (2<sup>-ΔΔCt</sup>): 0.75±0.04 vs. 0.58±0.01; protein expression: GPX4/β-actin: 0.96±0.11 vs. 0.24±0.04, FPN1/β-actin: 1.26±0.21 vs. 0.44±0.14, FTH1/β-actin: 0.27±0.12 vs. 0.15±0.07; all P < 0.05]. However, there were no statistically significant differences in any of the above indicators between the EHS+DMSO group and the EHS group.</p><p><strong>Conclusion: </strong>Activation of GPER can attenuate EHS-related lung injury in mice, and its mechanism may be related to the activation of the GPX4 signaling pathway and inhibition of ferroptosis.</p>","PeriodicalId":24079,"journal":{"name":"Zhonghua wei zhong bing ji jiu yi xue","volume":"37 3","pages":"268-274"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua wei zhong bing ji jiu yi xue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121430-20241030-00896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To investigate whether the G protein-coupled estrogen receptor (GPER) can attenuates acute lung injury in mice with exertional heat stroke (EHS) by inhibiting ferroptosis.
Methods: Sixty SPF-grade male C57BL/6 mice were randomly divided into four groups: normal control group (control group), EHS model group (EHS group), dimethyl sulfoxide (DMSO) solvent group (EHS+DMSO group), and GPER-specific agonist G1 group (EHS+G1 group), with 15 mice in each group. All mice underwent 14 days of adaptive training at 24-26 centigrade before modeling, and the EHS model was established using a high-temperature treadmill device. After successful modeling, the mice were allowed to cool naturally at room temperature. In the EHS+G1 group, 40 μg/kg of the GPER-specific agonist G1 was slowly injected intraperitoneally immediately after modeling. In the EHS+DMSO group, 40 μg/kg of DMSO was slowly injected intraperitoneally immediately after modeling. The control group received no treatment. Five hours after modeling, abdominal aortic blood was collected, and lung tissues were harvested after euthanasia. The lung coefficient was calculated to evaluate lung injury. Lung histopathological changes were observed under a light microscope after hematoxylin-eosin (HE) staining, and a lung histopathological score was assigned. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA), and Fe2+ in lung tissue. Immunofluorescence was used to detect the expression of glutathione peroxidase 4 (GPX4). Real-time polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of GPX4, ferroportin 1 (FPN1), and ferritin heavy chain 1 (FTH1). Western blotting was performed to detect the protein expression of GPX4, FPN1, and FTH1.
Results: Compared with the control group, the lung coefficient and lung histopathological score were significantly increased in the EHS group. HE staining showed significant thickening and unevenness of the alveolar septa and alveolar walls, partial alveolar collapse, and extensive erythrocyte, inflammatory cell, and plasma-like material extravasation in the alveolar spaces. Serum levels of TNF-α, IL-1β, MDA, and Fe2+ were significantly elevated. Immunofluorescence staining showed a significant decrease in GPX4-positive expression in lung tissue. Western blotting and RT-PCR showed significantly reduced protein and mRNA expression of GPX4, FPN1, and FTH1 in lung tissue. Compared with the EHS group, the EHS+G1 group showed a significant reduction in lung coefficient and lung histopathological score [lung coefficient (mg/g): 3.9±0.1 vs. 4.6±0.3, lung histopathological score: 4.2±0.2 vs. 6.9±0.2, both P < 0.05]. HE staining revealed reduced severity of lung tissue fluid extravasation, inflammatory infiltration, decreased hemorrhage, and less severe alveolar structural damage. Serum levels of TNF-α, IL-1β, MDA, and Fe2+ were significantly reduced [TNF-α (ng/L): 44.3±0.2 vs. 64.6±0.3, IL-1β (ng/L): 69.3±0.4 vs. 97.8±0.2, MDA (nmol/L): 2.8±0.3 vs. 3.6±0.5, Fe2+ (nmol/L): 0.021±0.004 vs. 0.028±0.004, all P < 0.05]. Immunofluorescence staining showed a significant decrease in GPX4-positive expression in lung tissue (fluorescence intensity: 35.53±2.41 vs. 16.45±0.31, P < 0.05). RT-PCR and Western blotting showed significantly increased mRNA and protein expression of GPX4, FPN1, and FTH1 in lung tissue [mRNA expression: GPX4 mRNA (2-ΔΔCt): 0.44±0.05 vs. 0.09±0.01, FPN1 mRNA (2-ΔΔCt): 0.77±0.17 vs. 0.42±0.14, FTH1 mRNA (2-ΔΔCt): 0.75±0.04 vs. 0.58±0.01; protein expression: GPX4/β-actin: 0.96±0.11 vs. 0.24±0.04, FPN1/β-actin: 1.26±0.21 vs. 0.44±0.14, FTH1/β-actin: 0.27±0.12 vs. 0.15±0.07; all P < 0.05]. However, there were no statistically significant differences in any of the above indicators between the EHS+DMSO group and the EHS group.
Conclusion: Activation of GPER can attenuate EHS-related lung injury in mice, and its mechanism may be related to the activation of the GPX4 signaling pathway and inhibition of ferroptosis.