[Acute respiratory distress syndrome caused by severe respiratory infectious diseases: clinical significance and solution of maintaining artificial airway closure].
{"title":"[Acute respiratory distress syndrome caused by severe respiratory infectious diseases: clinical significance and solution of maintaining artificial airway closure].","authors":"Junyi Zhang, Yiqing Li, Hongliang Li, Jianxin Zhou","doi":"10.3760/cma.j.cn121430-20240506-00404","DOIUrl":null,"url":null,"abstract":"<p><p>Since the beginning of the 21st century, the severe respiratory infectious diseases worldwide [such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), influenza A H1N1 and novel coronavirus infection have attracted wide attention from all walks of life due to their superior pathogenicity and transmissibility. Aerosols-carrying pathogens are the main transmission route of many severe respiratory infectious diseases, which can lead to severe respiratory failure and even acute respiratory distress syndrome (ARDS) in infected individuals. Mechanical ventilation is the primary treatment for ARDS, and the small tidal volume, appropriate level of positive end-expiratory pressure based lung protective ventilation strategy can effectively reduce the incidence of ventilator-induced lung injury (VILI). However, in the process of clinical treatment, it is sometimes necessary to briefly disconnect the connection between the artificial airway and the ventilator circuit, which will not only cause the residual aerosol in the respiratory system to spill out and pollute the surrounding environment, increase the risk of nosocomial infection including medical staff, but also interfere with the implementation of lung protective ventilation strategy and aggravate ventilator-induced lung injury. In addition, studies have shown that a lot of medical staff have nosocomial infections, especially staff involved in tracheal intubation, extubation and other airway related operations. In addition to enhancing personal protective measures, it is crucial to safeguard healthcare workers from aerosol contamination and minimize associated risks during airway management. At present, there are few researches on the temporary sealing of airway lines and ventilator system, and there is a lack of clear guidance. This review summarizes the research status in related fields to provide a reference for corresponding solutions and programs.</p>","PeriodicalId":24079,"journal":{"name":"Zhonghua wei zhong bing ji jiu yi xue","volume":"37 3","pages":"221-224"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua wei zhong bing ji jiu yi xue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121430-20240506-00404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Since the beginning of the 21st century, the severe respiratory infectious diseases worldwide [such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), influenza A H1N1 and novel coronavirus infection have attracted wide attention from all walks of life due to their superior pathogenicity and transmissibility. Aerosols-carrying pathogens are the main transmission route of many severe respiratory infectious diseases, which can lead to severe respiratory failure and even acute respiratory distress syndrome (ARDS) in infected individuals. Mechanical ventilation is the primary treatment for ARDS, and the small tidal volume, appropriate level of positive end-expiratory pressure based lung protective ventilation strategy can effectively reduce the incidence of ventilator-induced lung injury (VILI). However, in the process of clinical treatment, it is sometimes necessary to briefly disconnect the connection between the artificial airway and the ventilator circuit, which will not only cause the residual aerosol in the respiratory system to spill out and pollute the surrounding environment, increase the risk of nosocomial infection including medical staff, but also interfere with the implementation of lung protective ventilation strategy and aggravate ventilator-induced lung injury. In addition, studies have shown that a lot of medical staff have nosocomial infections, especially staff involved in tracheal intubation, extubation and other airway related operations. In addition to enhancing personal protective measures, it is crucial to safeguard healthcare workers from aerosol contamination and minimize associated risks during airway management. At present, there are few researches on the temporary sealing of airway lines and ventilator system, and there is a lack of clear guidance. This review summarizes the research status in related fields to provide a reference for corresponding solutions and programs.