{"title":"BayTetra: A Bayesian Semiparametric Approach for Testing Trajectory Differences.","authors":"Wei Jin, Qiuxin Gao, Yanxun Xu","doi":"10.1002/sim.70071","DOIUrl":null,"url":null,"abstract":"<p><p>Testing differences in longitudinal trajectories among distinct groups of population is an important task in many biomedical applications. Motivated by an application in Alzheimer's disease, we develop BayTetra, an innovative Bayesian semiparametric approach for estimating and testing group differences in multivariate longitudinal trajectories. BayTetra jointly models multivariate longitudinal data by directly accounting for correlations among different responses, and uses a semiparametric framework based on B-splines to capture the non-linear trajectories with great flexibility. To avoid overfitting, BayTetra encourages parsimonious trajectory estimation by imposing penalties on the smoothness of the spline functions. The proposed method converts the challenging task of hypothesis testing for longitudinal trajectories into a more manageable equivalent form based on hypothesis testing for spline coefficients. More importantly, by leveraging posterior inference with natural uncertainty quantification, our Bayesian method offers a more robust and straightforward hypothesis testing procedure than frequentist methods. Extensive simulations demonstrate BayTetra's superior performance over alternatives. Applications to the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD) study yield interpretable and valuable clinical insights. A major contribution of this paper is that we have developed an R package BayTetra, which implements the proposed Bayesian semiparametric approach and is the first publicly available software for hypothesis testing on trajectory differences based on a flexible modeling framework.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 7","pages":"e70071"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70071","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Testing differences in longitudinal trajectories among distinct groups of population is an important task in many biomedical applications. Motivated by an application in Alzheimer's disease, we develop BayTetra, an innovative Bayesian semiparametric approach for estimating and testing group differences in multivariate longitudinal trajectories. BayTetra jointly models multivariate longitudinal data by directly accounting for correlations among different responses, and uses a semiparametric framework based on B-splines to capture the non-linear trajectories with great flexibility. To avoid overfitting, BayTetra encourages parsimonious trajectory estimation by imposing penalties on the smoothness of the spline functions. The proposed method converts the challenging task of hypothesis testing for longitudinal trajectories into a more manageable equivalent form based on hypothesis testing for spline coefficients. More importantly, by leveraging posterior inference with natural uncertainty quantification, our Bayesian method offers a more robust and straightforward hypothesis testing procedure than frequentist methods. Extensive simulations demonstrate BayTetra's superior performance over alternatives. Applications to the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD) study yield interpretable and valuable clinical insights. A major contribution of this paper is that we have developed an R package BayTetra, which implements the proposed Bayesian semiparametric approach and is the first publicly available software for hypothesis testing on trajectory differences based on a flexible modeling framework.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.