{"title":"Viewing conditions predict evolutionary diversity in avian plumage colour.","authors":"Jamie Dunning, Catherine Sheard, John A Endler","doi":"10.1098/rspb.2024.1728","DOIUrl":null,"url":null,"abstract":"<p><p>Animals communicate using multiple sensory channels, including via vision. The colourful plumage of birds is a model system to study visual communication, having evolved through a complex interplay of processes, acting not only on the ability of a plumage patch to convey information, but also in response to physiological and environmental factors. Although much research on inter-specific variation in bird plumage has concentrated on sexual selection, much less has considered the role of non-sexual selection and how it is affected by the joint effects of avian viewing conditions and receiver vision. Here, we combined a taxonomically diverse database of avian plumage reflectance measurements with bird vision models, habitat and behavioural data to test the effect of three factors that affect viewing conditions-habitat openness, migratory preference and diel activity-on avian plumage contrast, accounting for shared evolutionary history and variation in avian visual systems. We find that habitat structure and migratory preference predicted plumage visual contrast, especially for females. Our study therefore demonstrates the important role of non-sexually selected traits, viewing conditions and bird vision, in shaping avian plumage contrast.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2044","pages":"20241728"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.1728","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animals communicate using multiple sensory channels, including via vision. The colourful plumage of birds is a model system to study visual communication, having evolved through a complex interplay of processes, acting not only on the ability of a plumage patch to convey information, but also in response to physiological and environmental factors. Although much research on inter-specific variation in bird plumage has concentrated on sexual selection, much less has considered the role of non-sexual selection and how it is affected by the joint effects of avian viewing conditions and receiver vision. Here, we combined a taxonomically diverse database of avian plumage reflectance measurements with bird vision models, habitat and behavioural data to test the effect of three factors that affect viewing conditions-habitat openness, migratory preference and diel activity-on avian plumage contrast, accounting for shared evolutionary history and variation in avian visual systems. We find that habitat structure and migratory preference predicted plumage visual contrast, especially for females. Our study therefore demonstrates the important role of non-sexually selected traits, viewing conditions and bird vision, in shaping avian plumage contrast.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.