Adwait Parchure, Mia Cesarec, Antonija Braut, Robert Kolman, Vlatka Ivanišević, Marina Čunko, Slađana Bursać, Richard de Reuver, Antonija J Begonja, Umberto Rosani, Siniša Volarević, Jonathan Maelfait, Igor Jurak
{"title":"ADAR1 p150 prevents HSV-1 from triggering PKR/eIF2α-mediated translational arrest and is required for efficient viral replication.","authors":"Adwait Parchure, Mia Cesarec, Antonija Braut, Robert Kolman, Vlatka Ivanišević, Marina Čunko, Slađana Bursać, Richard de Reuver, Antonija J Begonja, Umberto Rosani, Siniša Volarević, Jonathan Maelfait, Igor Jurak","doi":"10.1371/journal.ppat.1012452","DOIUrl":null,"url":null,"abstract":"<p><p>Adenosine deaminase acting on dsRNA 1 (ADAR1) catalyzes the deamination of adenosines to inosines in double-stranded RNAs (dsRNA) and regulates innate immunity by preventing the hyperactivation of cytosolic dsRNA sensors such as MDA5, PKR or ZBP1. ADAR1 has been shown to exert pro- and antiviral, editing-dependent and editing-independent functions in viral infections, but little is known about its function in herpesvirus replication. We now demonstrate that herpes simplex virus 1 (HSV-1) hyperactivates PKR in the absence of ADAR1, resulting in eIF2α mediated translational arrest and reduced viral replication. Silencing of PKR or inhibition of its downstream effectors by viral (ICP34.5) or pharmacological (ISRIB) inhibitors rescues viral replication in ADAR1-deficient cells. Upon infection, ADAR1 p150 interacts with PKR and prevents its hyperactivation. Our findings demonstrate that ADAR1 is an important proviral factor that raises the activation threshold for sensors of innate immunity.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 4","pages":"e1012452"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012452","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adenosine deaminase acting on dsRNA 1 (ADAR1) catalyzes the deamination of adenosines to inosines in double-stranded RNAs (dsRNA) and regulates innate immunity by preventing the hyperactivation of cytosolic dsRNA sensors such as MDA5, PKR or ZBP1. ADAR1 has been shown to exert pro- and antiviral, editing-dependent and editing-independent functions in viral infections, but little is known about its function in herpesvirus replication. We now demonstrate that herpes simplex virus 1 (HSV-1) hyperactivates PKR in the absence of ADAR1, resulting in eIF2α mediated translational arrest and reduced viral replication. Silencing of PKR or inhibition of its downstream effectors by viral (ICP34.5) or pharmacological (ISRIB) inhibitors rescues viral replication in ADAR1-deficient cells. Upon infection, ADAR1 p150 interacts with PKR and prevents its hyperactivation. Our findings demonstrate that ADAR1 is an important proviral factor that raises the activation threshold for sensors of innate immunity.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.