Jinal M Thakor, Unnati V Panchal, Dhaval Patel, Slawomir Filipek, Urszula Orzeł, Ramasamy Paulmurugan, Katja Hanack, Dorian Liepmann, Venkatesan Renugopalakrishnan, Chaitanya G Joshi, Madhvi Joshi
{"title":"Cross-variant immune shield: computational multiepitope vaccine design against B.617.2 to Omicron sub-lineages in SARS-CoV-2.","authors":"Jinal M Thakor, Unnati V Panchal, Dhaval Patel, Slawomir Filipek, Urszula Orzeł, Ramasamy Paulmurugan, Katja Hanack, Dorian Liepmann, Venkatesan Renugopalakrishnan, Chaitanya G Joshi, Madhvi Joshi","doi":"10.1080/07391102.2025.2487196","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic had a profound impact on global health. This study focuses on an in-depth analysis of the structural proteins (Spike (S), Nucleocapsid (N), Membrane (M), and Envelope (E) protein) of SARS-CoV-2 and its variants, aiming to develop a multiepitope vaccine construct that targets the virus independently of its variants. The analysis began by examining genetic variations in viral proteins relative to the reference strain Wuhan-Hu2, particularly in the S, M, N, and E proteins. T-cell epitope predictions for MHC Class-I and Class-II binding were conducted, shedding light on potential cytotoxic and helper T lymphocyte recognition. Identification of linear B-cell epitopes laid the groundwork for antibody-based humoral immune responses. The safety and efficacy of these epitopes were assessed for antigenicity, allergenicity, toxicity, immunogenicity, and conservancy. Population coverage analysis indicated promising global effectiveness of the designed vaccine construct. By incorporating 28 epitopes, we validated that was designed vaccine construct for stability through structural analysis. Molecular dynamics simulations and docking studies revealed its robust interaction with Toll-like receptor 4 (TLR4). Immune simulation studies suggested that the vaccine construct could induce a potent immune response by enhancing antibody titers, B-cell proliferation, memory cell development, and activation of T cells and natural killer cells upon administration. This comprehensive approach offers a promising multiepitope vaccine against SARS-CoV-2, with the potential for broad global coverage and strong immunogenicity. Further experimental validation holds the prospect of introducing a novel candidate vaccine to aid in the ongoing battle against the COVID-19 pandemic.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-20"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2487196","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic had a profound impact on global health. This study focuses on an in-depth analysis of the structural proteins (Spike (S), Nucleocapsid (N), Membrane (M), and Envelope (E) protein) of SARS-CoV-2 and its variants, aiming to develop a multiepitope vaccine construct that targets the virus independently of its variants. The analysis began by examining genetic variations in viral proteins relative to the reference strain Wuhan-Hu2, particularly in the S, M, N, and E proteins. T-cell epitope predictions for MHC Class-I and Class-II binding were conducted, shedding light on potential cytotoxic and helper T lymphocyte recognition. Identification of linear B-cell epitopes laid the groundwork for antibody-based humoral immune responses. The safety and efficacy of these epitopes were assessed for antigenicity, allergenicity, toxicity, immunogenicity, and conservancy. Population coverage analysis indicated promising global effectiveness of the designed vaccine construct. By incorporating 28 epitopes, we validated that was designed vaccine construct for stability through structural analysis. Molecular dynamics simulations and docking studies revealed its robust interaction with Toll-like receptor 4 (TLR4). Immune simulation studies suggested that the vaccine construct could induce a potent immune response by enhancing antibody titers, B-cell proliferation, memory cell development, and activation of T cells and natural killer cells upon administration. This comprehensive approach offers a promising multiepitope vaccine against SARS-CoV-2, with the potential for broad global coverage and strong immunogenicity. Further experimental validation holds the prospect of introducing a novel candidate vaccine to aid in the ongoing battle against the COVID-19 pandemic.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.