Murugesan Sankar, Thomas W K Fraser, Harald Kryvi, Malthe Hvas, Tom J Hansen, Per Gunnar Fjelldal
{"title":"Effect of heterozygosity, ploidy and incubation temperature on post-cranial axial skeletal meristics and deformities in Atlantic salmon (Salmo salar).","authors":"Murugesan Sankar, Thomas W K Fraser, Harald Kryvi, Malthe Hvas, Tom J Hansen, Per Gunnar Fjelldal","doi":"10.1111/jfb.70032","DOIUrl":null,"url":null,"abstract":"<p><p>The teleostean post-cranial axial skeleton is a highly specialized structure for an aquatic mode of life. However, there is limited knowledge regarding parental contributions, early-life environmental impacts on its meristic variation and if reduced heterozygosity challenges its development. To address this, the present study used isogenic homozygous and heterozygous lines of Atlantic salmon (Salmo salar) combined with ploidy manipulation (triploidization) to manipulate parental contributions, and incubation temperature (4 vs. 8°C) as an early-life variable, and reared the fish to ~150 g for a detailed radiological examination. Genetically identical fish incubated at 4°C, but not 8°C, segregated into two size modes (upper/lower), which differed in dorsal and tail fin lepidotrich counts as well as anal-fin pterygiophore counts. Incubation temperature did not impact on vertebrae counts, whereas 8°C incubation produced more supraneurals than 4°C incubation. After 8°C incubation, homozygous diploids (100% maternal chromosomes) and heterozygous triploids (67% maternal chromosomes) developed lower total vertebrae and dorsal- and anal-fin pterygiophore counts than heterozygous diploids (50% maternal chromosomes). For tail fin lepidotrichs, the same groups showed the following pattern: diploid heterozygous > triploid heterozygous > diploid homozygous. Homozygous diploids developed a high level of complete fusions in the vertebral column. The result of the present study indicates that the ability to enter different growth modes is dependent on embryo incubation temperature and may be controlled by epigenetic mechanisms. Further, the results show a strong maternal dosage effect on tail fin lepidotrich counts, whereas for other post-cranial skeletal parts, the presence of extra maternal chromosomes seems to overrule the paternal contribution. The findings may reflect evolutionary adaptations for the shaping of offspring phenotypes. Such mechanisms would impact on important fitness-related traits, such as swimming ability and fecundity, which are relevant for conservation and evolutionary biology and ecological and aquaculture sciences. Vertebral deformities developing in homozygous fish seem to be supported by active repair mechanisms, which may reflect an organism's ability to reduce the cost of inbreeding.</p>","PeriodicalId":15794,"journal":{"name":"Journal of fish biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fish biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jfb.70032","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The teleostean post-cranial axial skeleton is a highly specialized structure for an aquatic mode of life. However, there is limited knowledge regarding parental contributions, early-life environmental impacts on its meristic variation and if reduced heterozygosity challenges its development. To address this, the present study used isogenic homozygous and heterozygous lines of Atlantic salmon (Salmo salar) combined with ploidy manipulation (triploidization) to manipulate parental contributions, and incubation temperature (4 vs. 8°C) as an early-life variable, and reared the fish to ~150 g for a detailed radiological examination. Genetically identical fish incubated at 4°C, but not 8°C, segregated into two size modes (upper/lower), which differed in dorsal and tail fin lepidotrich counts as well as anal-fin pterygiophore counts. Incubation temperature did not impact on vertebrae counts, whereas 8°C incubation produced more supraneurals than 4°C incubation. After 8°C incubation, homozygous diploids (100% maternal chromosomes) and heterozygous triploids (67% maternal chromosomes) developed lower total vertebrae and dorsal- and anal-fin pterygiophore counts than heterozygous diploids (50% maternal chromosomes). For tail fin lepidotrichs, the same groups showed the following pattern: diploid heterozygous > triploid heterozygous > diploid homozygous. Homozygous diploids developed a high level of complete fusions in the vertebral column. The result of the present study indicates that the ability to enter different growth modes is dependent on embryo incubation temperature and may be controlled by epigenetic mechanisms. Further, the results show a strong maternal dosage effect on tail fin lepidotrich counts, whereas for other post-cranial skeletal parts, the presence of extra maternal chromosomes seems to overrule the paternal contribution. The findings may reflect evolutionary adaptations for the shaping of offspring phenotypes. Such mechanisms would impact on important fitness-related traits, such as swimming ability and fecundity, which are relevant for conservation and evolutionary biology and ecological and aquaculture sciences. Vertebral deformities developing in homozygous fish seem to be supported by active repair mechanisms, which may reflect an organism's ability to reduce the cost of inbreeding.
期刊介绍:
The Journal of Fish Biology is a leading international journal for scientists engaged in all aspects of fishes and fisheries research, both fresh water and marine. The journal publishes high-quality papers relevant to the central theme of fish biology and aims to bring together under one cover an overall picture of the research in progress and to provide international communication among researchers in many disciplines with a common interest in the biology of fish.