BSAN: A Self-Adapted Motor Imagery Decoding Framework Based on Contextual Information.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zikai Wang, Ang Li, Zhenyu Wang, Ting Zhou, Tianheng Xu, Honglin Hu
{"title":"BSAN: A Self-Adapted Motor Imagery Decoding Framework Based on Contextual Information.","authors":"Zikai Wang, Ang Li, Zhenyu Wang, Ting Zhou, Tianheng Xu, Honglin Hu","doi":"10.1109/JBHI.2025.3557499","DOIUrl":null,"url":null,"abstract":"<p><p>In motor imagery (MI) decoding, it still remains challenging to excavate enough contextual information of MI in different brain regions and to bridge the cross-session variance in feature distributions. In light of these issues, our study presents an innovative Bi-Stream Adaptation Network (BSAN) to bolster network efficacy, aiming to improve MI-based brain-computer interface (BCI) robustness across sessions. Our framework consists of the Bi-attention module, feature extractor, classifier, and Bi-discriminator. Precisely, we devise the Bi-attention module to reveal granular context information of MI with performing multi-scale convolutions asymptotically. Then, after features extraction, Bi-discriminator is involved to align the features from different MI sessions such that a uniform and accurate representation of neural patterns is achieved. By such a workflow, the proposed BSAN allows for the effective fusion of context coherence and session-invariance within the network architecture, therefore diminishing the reliance of redundant MI trials for MI-BCI re-calibration. To empirically substantiate BSAN, comprehensive experiments are conducted based on two public MI datasets. With average accuracies of 78.97% and 83.79% on two public datasets, and an inference time of 2.99 ms on CPU-only devices, it is believed that our approach has the potential to accelerate the practical deployment of MI-BCI.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3557499","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In motor imagery (MI) decoding, it still remains challenging to excavate enough contextual information of MI in different brain regions and to bridge the cross-session variance in feature distributions. In light of these issues, our study presents an innovative Bi-Stream Adaptation Network (BSAN) to bolster network efficacy, aiming to improve MI-based brain-computer interface (BCI) robustness across sessions. Our framework consists of the Bi-attention module, feature extractor, classifier, and Bi-discriminator. Precisely, we devise the Bi-attention module to reveal granular context information of MI with performing multi-scale convolutions asymptotically. Then, after features extraction, Bi-discriminator is involved to align the features from different MI sessions such that a uniform and accurate representation of neural patterns is achieved. By such a workflow, the proposed BSAN allows for the effective fusion of context coherence and session-invariance within the network architecture, therefore diminishing the reliance of redundant MI trials for MI-BCI re-calibration. To empirically substantiate BSAN, comprehensive experiments are conducted based on two public MI datasets. With average accuracies of 78.97% and 83.79% on two public datasets, and an inference time of 2.99 ms on CPU-only devices, it is believed that our approach has the potential to accelerate the practical deployment of MI-BCI.

基于上下文信息的自适应运动意象解码框架。
在运动意象解码中,如何在不同脑区挖掘足够的运动意象语境信息,并弥合运动意象特征分布的跨会话差异仍然是一个挑战。鉴于这些问题,本研究提出了一种创新的双流适应网络(BSAN)来提高网络效率,旨在提高基于mi的脑机接口(BCI)跨会话的鲁棒性。该框架由双注意模块、特征提取器、分类器和双鉴别器组成。精确地说,我们设计了双注意模块,通过渐近地执行多尺度卷积来揭示MI的粒度上下文信息。然后,在特征提取之后,使用Bi-discriminator对来自不同MI会话的特征进行对齐,从而实现神经模式的统一和准确表示。通过这样的工作流程,所提出的BSAN允许在网络架构内有效地融合上下文一致性和会话不变性,因此减少了对MI- bci重新校准的冗余MI试验的依赖。为了实证BSAN,我们基于两个公共MI数据集进行了综合实验。在两个公共数据集上的平均准确率为78.97%和83.79%,在仅cpu设备上的推理时间为2.99 ms,相信我们的方法有可能加速MI-BCI的实际部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信