An active ingredient from the combination of Corydalis Rhizoma and Paeoniae Radix Alba relieves chronic compression injury-induced pain in rats by ameliorating AR/Mboat2-mediated ferroptosis in spinal cord neurons.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Frontiers in Pharmacology Pub Date : 2025-03-25 eCollection Date: 2025-01-01 DOI:10.3389/fphar.2025.1558916
Ze-Ming Wang, Xiao-Hong Wei, Gui-Yang Xia, Lin-Nan Zhou, Jin-Yu Li, Sheng Lin
{"title":"An active ingredient from the combination of Corydalis Rhizoma and Paeoniae Radix Alba relieves chronic compression injury-induced pain in rats by ameliorating AR/Mboat2-mediated ferroptosis in spinal cord neurons.","authors":"Ze-Ming Wang, Xiao-Hong Wei, Gui-Yang Xia, Lin-Nan Zhou, Jin-Yu Li, Sheng Lin","doi":"10.3389/fphar.2025.1558916","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>A combination of Corydalis Rhizoma (the dried tuber of <i>Corydalis yanhusuo</i> W.T. Wang) and Paeoniae Radix Alba (the root of <i>Paeonia lactiflora</i> Pall.) has been traditionally employed for analgesia. However, the underlying pharmacological mechanisms have not been clarified. The aim of the present study was to investigate the anti-inflammatory and analgesic effects of YB60, the 60% ethanol elution fraction derived from the combination of Corydalis Rhizoma and Paeoniae Radix Alba, and the explore the underlying mechanism.</p><p><strong>Methods: </strong>Lipopolysaccharide-induced cellular inflammation model and chronic compression injury (CCI) rat model were used to study the anti-inflammatory and analgesic effects of YB60. Proteomics and molecular biology experiments were applied to explore the potential analgesic mechanism of YB60.</p><p><strong>Results: </strong>The results demonstrated that YB60 significantly decreased inflammatory cytokine levels both in cellular models and rat serum, while concurrently elevating pain thresholds in CCI rats. Proteomic analysis indicated that YB60 could upregulate the expression of Membrane Bound O-Acyltransferase Domain Containing 2 (Mboat2), a newly confirmed marker of ferroptosis. Furthermore, YB60 prevented ferroptosis in the spinal cords of CCI rats. Western blotting and immunofluorescent dual staining further revealed that YB60 increased the expression of Mboat2 and its upstream signaling molecule Androgen receptor (AR). Results in PC12 cells <i>in vitro</i> showed that YB60 reversed the downregulation of AR and Mboat2, and ameliorated ferroptosis induced by Erastin, while knockdown of AR eliminated the above effects of YB60.</p><p><strong>Conclusion: </strong>These findings indicated that YB60 exerted its analgesic effect by inhibiting ferroptosis in spinal cord neurons via modulation of the AR/Mboat2 pathway.</p>","PeriodicalId":12491,"journal":{"name":"Frontiers in Pharmacology","volume":"16 ","pages":"1558916"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975664/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphar.2025.1558916","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: A combination of Corydalis Rhizoma (the dried tuber of Corydalis yanhusuo W.T. Wang) and Paeoniae Radix Alba (the root of Paeonia lactiflora Pall.) has been traditionally employed for analgesia. However, the underlying pharmacological mechanisms have not been clarified. The aim of the present study was to investigate the anti-inflammatory and analgesic effects of YB60, the 60% ethanol elution fraction derived from the combination of Corydalis Rhizoma and Paeoniae Radix Alba, and the explore the underlying mechanism.

Methods: Lipopolysaccharide-induced cellular inflammation model and chronic compression injury (CCI) rat model were used to study the anti-inflammatory and analgesic effects of YB60. Proteomics and molecular biology experiments were applied to explore the potential analgesic mechanism of YB60.

Results: The results demonstrated that YB60 significantly decreased inflammatory cytokine levels both in cellular models and rat serum, while concurrently elevating pain thresholds in CCI rats. Proteomic analysis indicated that YB60 could upregulate the expression of Membrane Bound O-Acyltransferase Domain Containing 2 (Mboat2), a newly confirmed marker of ferroptosis. Furthermore, YB60 prevented ferroptosis in the spinal cords of CCI rats. Western blotting and immunofluorescent dual staining further revealed that YB60 increased the expression of Mboat2 and its upstream signaling molecule Androgen receptor (AR). Results in PC12 cells in vitro showed that YB60 reversed the downregulation of AR and Mboat2, and ameliorated ferroptosis induced by Erastin, while knockdown of AR eliminated the above effects of YB60.

Conclusion: These findings indicated that YB60 exerted its analgesic effect by inhibiting ferroptosis in spinal cord neurons via modulation of the AR/Mboat2 pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Pharmacology
Frontiers in Pharmacology PHARMACOLOGY & PHARMACY-
CiteScore
7.80
自引率
8.90%
发文量
5163
审稿时长
14 weeks
期刊介绍: Frontiers in Pharmacology is a leading journal in its field, publishing rigorously peer-reviewed research across disciplines, including basic and clinical pharmacology, medicinal chemistry, pharmacy and toxicology. Field Chief Editor Heike Wulff at UC Davis is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信