Non-linear mixed-effects modelling and population-based model selection for 131I kinetics in benign thyroid disease.

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Deni Hardiansyah, Ade Riana, Heribert Hänscheid, Ambros J Beer, Michael Lassmann, Gerhard Glatting
{"title":"Non-linear mixed-effects modelling and population-based model selection for <sup>131</sup>I kinetics in benign thyroid disease.","authors":"Deni Hardiansyah, Ade Riana, Heribert Hänscheid, Ambros J Beer, Michael Lassmann, Gerhard Glatting","doi":"10.1186/s40658-025-00735-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to determine a mathematical model for accurately calculating time-integrated activities (TIAs) of target tissue in <sup>131</sup>I therapy for benign thyroid disease using the population-based model selection and non-linear mixed-effects (PBMS-NLME) method.</p><p><strong>Methods: </strong>Biokinetic data of <sup>131</sup>I in target tissue were collected from seventy-three patients at 2, 6, 24, 48, and 96 (N = 53) or 120 (N = 20) h after oral capsule administration with 1 MBq <sup>131</sup>I. Based on the Akaike weight, the best sum-of-exponential function (SOEF) describing the biokinetic data was selected using PBMS-NLME modelling. Nine SOEF with three to six parameters (including the function from the European Association of Nuclear Medicine Standard Operational Procedure (EANM SOP)) were used. The fittings were repeated 1000 times with different starting values of the SOE parameters to find the optimal fit. Akaike weight was used to identify the performance of the best model from PBMS-NLME and the EANM SOP SOE function with individual fitting.</p><p><strong>Results: </strong>Based on the PBMS-NLME analysis, the SOEF <math> <mrow> <mfrac><msub><mi>λ</mi> <mn>1</mn></msub> <mrow><msub><mi>λ</mi> <mn>2</mn></msub> <mo>+</mo> <msub><mi>λ</mi> <mn>1</mn></msub> <mo>-</mo> <msub><mi>λ</mi> <mn>3</mn></msub> </mrow> </mfrac> <mfenced> <mrow><msup><mi>e</mi> <mrow><mo>-</mo> <mfenced> <mrow><msub><mi>λ</mi> <mn>3</mn></msub> <mo>+</mo> <msub><mi>λ</mi> <mrow><mi>phys</mi></mrow> </msub> </mrow> </mfenced> <mi>t</mi></mrow> </msup> <mo>-</mo> <msup><mi>e</mi> <mrow><mo>-</mo> <mfenced> <mrow><msub><mi>λ</mi> <mn>1</mn></msub> <mo>+</mo> <msub><mi>λ</mi> <mn>2</mn></msub> <mo>+</mo> <msub><mi>λ</mi> <mrow><mi>phys</mi></mrow> </msub> </mrow> </mfenced> <mi>t</mi></mrow> </msup> </mrow> </mfenced> <mo>+</mo> <msub><mi>a</mi> <mn>1</mn></msub> <msup><mi>e</mi> <mrow><mo>-</mo> <mfenced> <mrow><msub><mi>λ</mi> <mn>1</mn></msub> <mo>+</mo> <msub><mi>λ</mi> <mn>2</mn></msub> <mo>+</mo> <msub><mi>λ</mi> <mrow><mi>phys</mi></mrow> </msub> </mrow> </mfenced> <mi>t</mi></mrow> </msup> </mrow> </math> was selected as the function most supported by the data. The Akaike weight of the best function was approximately 100%. The best SOEF from the PBMS-NLME approach shows a better performance in describing the biokinetic data of <sup>131</sup>I in the thyroid gland than the function from the EANM SOP with individual fitting, based on the Akaike weight.</p><p><strong>Conclusions: </strong>The best mathematical model from the PBMS-NLME approach has one more free parameter than the EANM SOP function, which could lead to more accurate TIAs.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"12 1","pages":"37"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11979076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-025-00735-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to determine a mathematical model for accurately calculating time-integrated activities (TIAs) of target tissue in 131I therapy for benign thyroid disease using the population-based model selection and non-linear mixed-effects (PBMS-NLME) method.

Methods: Biokinetic data of 131I in target tissue were collected from seventy-three patients at 2, 6, 24, 48, and 96 (N = 53) or 120 (N = 20) h after oral capsule administration with 1 MBq 131I. Based on the Akaike weight, the best sum-of-exponential function (SOEF) describing the biokinetic data was selected using PBMS-NLME modelling. Nine SOEF with three to six parameters (including the function from the European Association of Nuclear Medicine Standard Operational Procedure (EANM SOP)) were used. The fittings were repeated 1000 times with different starting values of the SOE parameters to find the optimal fit. Akaike weight was used to identify the performance of the best model from PBMS-NLME and the EANM SOP SOE function with individual fitting.

Results: Based on the PBMS-NLME analysis, the SOEF λ 1 λ 2 + λ 1 - λ 3 e - λ 3 + λ phys t - e - λ 1 + λ 2 + λ phys t + a 1 e - λ 1 + λ 2 + λ phys t was selected as the function most supported by the data. The Akaike weight of the best function was approximately 100%. The best SOEF from the PBMS-NLME approach shows a better performance in describing the biokinetic data of 131I in the thyroid gland than the function from the EANM SOP with individual fitting, based on the Akaike weight.

Conclusions: The best mathematical model from the PBMS-NLME approach has one more free parameter than the EANM SOP function, which could lead to more accurate TIAs.

良性甲状腺疾病131I动力学的非线性混合效应建模和基于人群的模型选择。
目的:本研究旨在采用基于人群的模型选择和非线性混合效应(PBMS-NLME)方法,建立准确计算良性甲状腺疾病131I治疗中靶组织时间积分活性(TIAs)的数学模型。方法:73例患者口服1 MBq 131I胶囊后2、6、24、48、96 (N = 53)或120 (N = 20) h,采集靶组织131I的生物动力学数据。在此基础上,利用PBMS-NLME模型选择了描述生物动力学数据的最佳指数和函数(SOEF)。使用了9个SOEF,分别有3 - 6个参数(包括欧洲核医学协会标准操作程序(EANM SOP)的函数)。在不同SOE参数的初始值下,重复进行了1000次拟合,以找到最优的拟合。采用Akaike权值对PBMS-NLME和EANM SOP SOE函数进行单项拟合,确定最佳模型的性能。结果:基于PBMS-NLME分析,选择SOEF λ 1 λ 2 + λ 1 - λ 3e - λ 3 + λ phys t - e - λ 1 + λ 2 + λ phys t + a1e - λ 1 + λ 2 + λ phys t作为数据支持度最高的函数。最佳函数的赤池权值约为100%。PBMS-NLME方法的最佳sof在描述甲状腺中131I的生物动力学数据方面表现优于基于Akaike权值的EANM SOP函数。结论:PBMS-NLME方法的最佳数学模型比EANM SOP函数多一个自由参数,可获得更准确的TIAs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信