Inyong Jeong, Seokjin Kong, Yeongmin Kim, Yihyun Kim, Byeongsu Kim, Se-Jin Ahn, Ju-Wan Kim, Hwamin Lee
{"title":"Personalized Health Prediction AI Models Using Transfer Learning and Strategic Overfitting on Wearable Device Data.","authors":"Inyong Jeong, Seokjin Kong, Yeongmin Kim, Yihyun Kim, Byeongsu Kim, Se-Jin Ahn, Ju-Wan Kim, Hwamin Lee","doi":"10.1007/s10916-025-02180-5","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing availability of wearable device data provides an opportunity for developing personalized models for health monitoring and condition prediction. Unlike conventional approaches that rely on pooled data from diverse individuals, our study explores the strategy of intentionally overfitting models to personal data and subsequently applying a transfer learning technique to refine performance for each user. We predicted Next-Day Condition (NDC) and Next-Day Emotion (NDC) while considering diverse features such as physical activity, sleep patterns, environmental context, and self-reported measures. Initial experiments showed that models trained at the sample level performed better on evaluation data but failed to generalize effectively during external validation. In contrast, our personalized learning approach, initiated with a pre-trained model, significantly enhanced accuracy within ten days of incremental user-specific training. Although generalization across the entire cohort diminished after individual tailoring, extended individualized training increased the overall predictive accuracy for each participant's personal data. The interpretation of feature importance using Shapley's additive explanations revealed substantial variability in the features influencing predictions across individuals, emphasizing the need for tailored health models. These findings highlight the potential of combining intentional overfitting and transfer learning in constructing high-performance user-specific predictive models from wearable data. Future research should expand the number of participants, extend the training period, and refine these methods to bolster personalized digital health solutions.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"45"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02180-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing availability of wearable device data provides an opportunity for developing personalized models for health monitoring and condition prediction. Unlike conventional approaches that rely on pooled data from diverse individuals, our study explores the strategy of intentionally overfitting models to personal data and subsequently applying a transfer learning technique to refine performance for each user. We predicted Next-Day Condition (NDC) and Next-Day Emotion (NDC) while considering diverse features such as physical activity, sleep patterns, environmental context, and self-reported measures. Initial experiments showed that models trained at the sample level performed better on evaluation data but failed to generalize effectively during external validation. In contrast, our personalized learning approach, initiated with a pre-trained model, significantly enhanced accuracy within ten days of incremental user-specific training. Although generalization across the entire cohort diminished after individual tailoring, extended individualized training increased the overall predictive accuracy for each participant's personal data. The interpretation of feature importance using Shapley's additive explanations revealed substantial variability in the features influencing predictions across individuals, emphasizing the need for tailored health models. These findings highlight the potential of combining intentional overfitting and transfer learning in constructing high-performance user-specific predictive models from wearable data. Future research should expand the number of participants, extend the training period, and refine these methods to bolster personalized digital health solutions.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.