Red Blood Cells with Reduced Deformability are Selectively Cleared from Circulation in a Mouse Model.

IF 7.4 1区 医学 Q1 HEMATOLOGY
Emel Islamzada, Kerryn Matthews, Erik S Lamoureux, Simon P Duffy, Mark D Scott, Hongshen Ma
{"title":"Red Blood Cells with Reduced Deformability are Selectively Cleared from Circulation in a Mouse Model.","authors":"Emel Islamzada, Kerryn Matthews, Erik S Lamoureux, Simon P Duffy, Mark D Scott, Hongshen Ma","doi":"10.1182/bloodadvances.2024014100","DOIUrl":null,"url":null,"abstract":"<p><p>Donated red blood cells (RBCs) collected for blood transfusions progressively lose their deformability due to natural aging and cold storage in blood bags. This loss accelerates circulatory clearance via mechanical sensing by the spleen, leading to RBC retention and entrapment. While reduced deformability is known to shorten RBC circulation time, the extent to which splenic clearance distinguishes and removes RBCs with altered deformability is poorly understood. Here, we show that sub-populations of donor RBCs with a deformability distribution distinct from endogenous recipient's RBCs are selectively and specifically cleared from circulation within 24 hours of infusion in a mouse model, whereas donor RBCs with a deformability distribution similar to endogenous recipient RBCs persist and undergo normal clearance. We performed this study by treating murine donor RBCs with the mild catalase inhibitor aminotriazole to generate donor RBC with a widened range of deformability. These cells were then fluorescently labeled and infused into syngeneic recipients. Using a microfluidic device capable of deformability-based sorting of RBCs, we concurrently measure the deformability distribution of donor RBCs pre-transfusion and post-transfusion, along with endogenous recipient RBCs. Our findings provide direct evidence that RBCs with deformability profiles distinct from endogenous recipient RBCs are selectively and specifically cleared from circulation.</p>","PeriodicalId":9228,"journal":{"name":"Blood advances","volume":" ","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/bloodadvances.2024014100","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Donated red blood cells (RBCs) collected for blood transfusions progressively lose their deformability due to natural aging and cold storage in blood bags. This loss accelerates circulatory clearance via mechanical sensing by the spleen, leading to RBC retention and entrapment. While reduced deformability is known to shorten RBC circulation time, the extent to which splenic clearance distinguishes and removes RBCs with altered deformability is poorly understood. Here, we show that sub-populations of donor RBCs with a deformability distribution distinct from endogenous recipient's RBCs are selectively and specifically cleared from circulation within 24 hours of infusion in a mouse model, whereas donor RBCs with a deformability distribution similar to endogenous recipient RBCs persist and undergo normal clearance. We performed this study by treating murine donor RBCs with the mild catalase inhibitor aminotriazole to generate donor RBC with a widened range of deformability. These cells were then fluorescently labeled and infused into syngeneic recipients. Using a microfluidic device capable of deformability-based sorting of RBCs, we concurrently measure the deformability distribution of donor RBCs pre-transfusion and post-transfusion, along with endogenous recipient RBCs. Our findings provide direct evidence that RBCs with deformability profiles distinct from endogenous recipient RBCs are selectively and specifically cleared from circulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Blood advances
Blood advances Medicine-Hematology
CiteScore
12.70
自引率
2.70%
发文量
840
期刊介绍: Blood Advances, a semimonthly medical journal published by the American Society of Hematology, marks the first addition to the Blood family in 70 years. This peer-reviewed, online-only, open-access journal was launched under the leadership of founding editor-in-chief Robert Negrin, MD, from Stanford University Medical Center in Stanford, CA, with its inaugural issue released on November 29, 2016. Blood Advances serves as an international platform for original articles detailing basic laboratory, translational, and clinical investigations in hematology. The journal comprehensively covers all aspects of hematology, including disorders of leukocytes (both benign and malignant), erythrocytes, platelets, hemostatic mechanisms, vascular biology, immunology, and hematologic oncology. Each article undergoes a rigorous peer-review process, with selection based on the originality of the findings, the high quality of the work presented, and the clarity of the presentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信