{"title":"DeepMethyGene: a deep-learning model to predict gene expression using DNA methylations.","authors":"Yuyao Yan, Xinyi Chai, Jiajun Liu, Sijia Wang, Wenran Li, Tao Huang","doi":"10.1186/s12859-025-06115-2","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression is the basis for cells to achieve various functions, while DNA methylation constitutes a critical epigenetic mechanism governing gene expression regulation. Here we propose DeepMethyGene, an adaptive recursive convolutional neural network model based on ResNet that predicts gene expression using DNA methylation information. Our model transforms methylation Beta values to M values for Gaussian distributed data optimization, dynamically adjusts the output channels according to input dimension, and implements residual blocks to mitigate the problem of gradient vanishing when training very deep networks. Benchmarking against the state-of-the-art geneEXPLORE model (R<sup>2</sup> = 0.449), DeepMethyGene (R<sup>2</sup> = 0.640) demonstrated superior predictive performance. Further analysis revealed that the number of methylation sites and the average distance between these sites and gene transcription start sites (TSS) significantly affected the prediction accuracy. By exploring the complex relationship between methylation and gene expression, this study provides theoretical support for disease progression prediction and clinical intervention. Relevant data and code are available at https://github.com/yaoyao-11/DeepMethyGene .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"99"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06115-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gene expression is the basis for cells to achieve various functions, while DNA methylation constitutes a critical epigenetic mechanism governing gene expression regulation. Here we propose DeepMethyGene, an adaptive recursive convolutional neural network model based on ResNet that predicts gene expression using DNA methylation information. Our model transforms methylation Beta values to M values for Gaussian distributed data optimization, dynamically adjusts the output channels according to input dimension, and implements residual blocks to mitigate the problem of gradient vanishing when training very deep networks. Benchmarking against the state-of-the-art geneEXPLORE model (R2 = 0.449), DeepMethyGene (R2 = 0.640) demonstrated superior predictive performance. Further analysis revealed that the number of methylation sites and the average distance between these sites and gene transcription start sites (TSS) significantly affected the prediction accuracy. By exploring the complex relationship between methylation and gene expression, this study provides theoretical support for disease progression prediction and clinical intervention. Relevant data and code are available at https://github.com/yaoyao-11/DeepMethyGene .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.