Genetic diversity and population structure in Ethiopian mustard (Brassica carinata A. Braun) revealed by high-density DArTSeq SNP genotyping.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yirssaw Demeke Ambaw, Andargachew Gedebo Abitea, Temesgen Magule Olango
{"title":"Genetic diversity and population structure in Ethiopian mustard (Brassica carinata A. Braun) revealed by high-density DArTSeq SNP genotyping.","authors":"Yirssaw Demeke Ambaw, Andargachew Gedebo Abitea, Temesgen Magule Olango","doi":"10.1186/s12864-025-11469-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ethiopian mustard (Brassica carinata (A) Braun) is a promising oilseed crop with the potential for sustainable biofuel and bio-industrial applications. Despite the presence of diverse germplasms in Ethiopia, their genetic diversity remains largely unexplored. This study evaluated the genetic diversity and population structure of 188 B. carinata genotypes using high-density Single Nucleotide Polymorphism (SNP) markers generated though DArTseq™ Genotyping-by-Sequencing (GBS). Of the 15,515 identified DArTSeq SNPs, 3,793 high-quality markers were retained and used to analyze the genetic diversity and population structure.</p><p><strong>Results: </strong>The results from STRUCTURE, principal coordinate analysis (PCoA), and neighbor-joining tree analyses revealed two slightly distinct subpopulations, with Pop1 predominantly comprising genotypes from the Oromia and Amhara regions (86.17%), whereas Pop2 primarily consisted of released varieties, suggests the influence of targeted selection. Despite the presence of subpopulations, PCoA indicated a relatively limited overall genetic diversity among the genotypes. Analysis of Molecular Variance (AMOVA) revealed higher genetic variation within populations (65.19%) than between populations (34.81%), resulting in low genetic differentiation (PhiPT = 0.02) and high gene flow (Nm = 5.74). Notably, subpopulation formation was not strongly correlated with geographical origin, highlights that factors beyond geography, such as gene flow and selection pressure, may have played a significant role in shaping the observed genetic diversity. Genetic diversity indices revealed a slightly low-to-moderate variation within the B. carinata populations, as evidenced by the slightly low expected heterozygosity (He = 0.21) and moderate polymorphic information content (PIC = 0.36).</p><p><strong>Conclusion: </strong>Overall, this study revealed a moderate level of genetic diversity within the evaluated B. carinata genotypes. The results offer valuable insights into the genetic structure of this species and highlight the need for targeted strategies to enhance genetic diversity in future breeding initiatives and conservation efforts.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"354"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11469-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ethiopian mustard (Brassica carinata (A) Braun) is a promising oilseed crop with the potential for sustainable biofuel and bio-industrial applications. Despite the presence of diverse germplasms in Ethiopia, their genetic diversity remains largely unexplored. This study evaluated the genetic diversity and population structure of 188 B. carinata genotypes using high-density Single Nucleotide Polymorphism (SNP) markers generated though DArTseq™ Genotyping-by-Sequencing (GBS). Of the 15,515 identified DArTSeq SNPs, 3,793 high-quality markers were retained and used to analyze the genetic diversity and population structure.

Results: The results from STRUCTURE, principal coordinate analysis (PCoA), and neighbor-joining tree analyses revealed two slightly distinct subpopulations, with Pop1 predominantly comprising genotypes from the Oromia and Amhara regions (86.17%), whereas Pop2 primarily consisted of released varieties, suggests the influence of targeted selection. Despite the presence of subpopulations, PCoA indicated a relatively limited overall genetic diversity among the genotypes. Analysis of Molecular Variance (AMOVA) revealed higher genetic variation within populations (65.19%) than between populations (34.81%), resulting in low genetic differentiation (PhiPT = 0.02) and high gene flow (Nm = 5.74). Notably, subpopulation formation was not strongly correlated with geographical origin, highlights that factors beyond geography, such as gene flow and selection pressure, may have played a significant role in shaping the observed genetic diversity. Genetic diversity indices revealed a slightly low-to-moderate variation within the B. carinata populations, as evidenced by the slightly low expected heterozygosity (He = 0.21) and moderate polymorphic information content (PIC = 0.36).

Conclusion: Overall, this study revealed a moderate level of genetic diversity within the evaluated B. carinata genotypes. The results offer valuable insights into the genetic structure of this species and highlight the need for targeted strategies to enhance genetic diversity in future breeding initiatives and conservation efforts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信