A computational HLA allele-typing protocol to de-noise and leverage nanopore amplicon data.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jalal Siddiqui, Rohita Sinha, James Grantham, Ronnie LaCombe, Judith R Alonzo, Scott Cowden, Steven Kleiboeker
{"title":"A computational HLA allele-typing protocol to de-noise and leverage nanopore amplicon data.","authors":"Jalal Siddiqui, Rohita Sinha, James Grantham, Ronnie LaCombe, Judith R Alonzo, Scott Cowden, Steven Kleiboeker","doi":"10.1186/s12864-025-11547-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rapid turnaround time for a third-field resolution deceased donor human leukocyte antigen (HLA) typing is critical to improve organ transplantation outcomes. Third generation DNA sequencing platforms such as Oxford Nanopore (ONT) offer the opportunity to deliver rapid results at single nucleotide level resolution, in particular sequencing data that could be denoised computationally. Here we present a computational pipeline for up-to third-field HLA allele typing following ONT sequencing.</p><p><strong>Results: </strong>From a R10.3 flow cell batch of 31 samples of known HLA allele types, up to 10,000 ONT reads were aligned using BWA aligner to reference allele sequences from the IPD-IMGT/HLA database. For each gene, the top two hits to reference alleles at the third field were selected. Using our pipeline, we obtained the following percent concordance at the 1st, 2nd and 3rd field: HLA-A (98.4%, 98.4%, 98.4%), HLA-B (100%, 96.8%, 96.8%), HLA-C (100%, 98.4%, 98.4%), HLA-DPA1 (100%, 96.8%, 96.8%), HLA-DPB1 (100%, 100%, 98.4%), HLA-DQA1 (100%, 98.4%, 98.4%), HLA-DQB1 (100%, 98.4%, 98.4%), HLA-DRB1 (83.9%, 64.5%, 64.5%), HLA-DRB3 (82.6%, 73.9%, 73.9%), HLA-DRB4 (100%, 100%, 100%) and HLA-DRB5 (100%, 100%, 100%). By running our pipeline on an additional R10.3 flow cell batch of 63 samples, the following percent concordances were obtained:: HLA-A (100%, 96.8%, 88.1%), HLA-B (100%, 90.5.4%, 88.1%), HLA-C (100%, 99.2%, 99.2%), HLA-DPA1 (100%, 98.4%, 97.6%), HLA-DPB1 (98.4%, 97.6%, 92.9%), HLA-DQA1 (100%, 100%, 98.4%), HLA-DQB1 (100%, 97.6%, 96.0%), HLA-DRB1 (88.9%, 68.3%, 68.3%), HLA-DRB3 (81.0%, 61.9%, 61.9%), HLA-DRB4 (100%, 97.4%, 94.7%) and HLA-DRB5 (73.3%, 66.7%, 66.7%). In addition, our pipeline demonstrated significantly improved concordance compared to publicly available pipeline HLA-LA and concordances close to Athlon2 in commercial development.</p><p><strong>Conclusion: </strong>Our algorithm had a > 96% concordance for non-HLA-DRB genes at 3rd field on the first batch and > 88% concordance for non-HLA-DRB genes at 3rd field and > 90% at 2nd field on the second batch tested. In addition, it out-performs HLA-LA and approaches the performance of the Athlon2. This lays groundwork for better utilizing Nanopore sequencing data for HLA typing especially in improving organ transplant outcomes.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"356"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11547-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Rapid turnaround time for a third-field resolution deceased donor human leukocyte antigen (HLA) typing is critical to improve organ transplantation outcomes. Third generation DNA sequencing platforms such as Oxford Nanopore (ONT) offer the opportunity to deliver rapid results at single nucleotide level resolution, in particular sequencing data that could be denoised computationally. Here we present a computational pipeline for up-to third-field HLA allele typing following ONT sequencing.

Results: From a R10.3 flow cell batch of 31 samples of known HLA allele types, up to 10,000 ONT reads were aligned using BWA aligner to reference allele sequences from the IPD-IMGT/HLA database. For each gene, the top two hits to reference alleles at the third field were selected. Using our pipeline, we obtained the following percent concordance at the 1st, 2nd and 3rd field: HLA-A (98.4%, 98.4%, 98.4%), HLA-B (100%, 96.8%, 96.8%), HLA-C (100%, 98.4%, 98.4%), HLA-DPA1 (100%, 96.8%, 96.8%), HLA-DPB1 (100%, 100%, 98.4%), HLA-DQA1 (100%, 98.4%, 98.4%), HLA-DQB1 (100%, 98.4%, 98.4%), HLA-DRB1 (83.9%, 64.5%, 64.5%), HLA-DRB3 (82.6%, 73.9%, 73.9%), HLA-DRB4 (100%, 100%, 100%) and HLA-DRB5 (100%, 100%, 100%). By running our pipeline on an additional R10.3 flow cell batch of 63 samples, the following percent concordances were obtained:: HLA-A (100%, 96.8%, 88.1%), HLA-B (100%, 90.5.4%, 88.1%), HLA-C (100%, 99.2%, 99.2%), HLA-DPA1 (100%, 98.4%, 97.6%), HLA-DPB1 (98.4%, 97.6%, 92.9%), HLA-DQA1 (100%, 100%, 98.4%), HLA-DQB1 (100%, 97.6%, 96.0%), HLA-DRB1 (88.9%, 68.3%, 68.3%), HLA-DRB3 (81.0%, 61.9%, 61.9%), HLA-DRB4 (100%, 97.4%, 94.7%) and HLA-DRB5 (73.3%, 66.7%, 66.7%). In addition, our pipeline demonstrated significantly improved concordance compared to publicly available pipeline HLA-LA and concordances close to Athlon2 in commercial development.

Conclusion: Our algorithm had a > 96% concordance for non-HLA-DRB genes at 3rd field on the first batch and > 88% concordance for non-HLA-DRB genes at 3rd field and > 90% at 2nd field on the second batch tested. In addition, it out-performs HLA-LA and approaches the performance of the Athlon2. This lays groundwork for better utilizing Nanopore sequencing data for HLA typing especially in improving organ transplant outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信