Yuan-Yuan Shuai, Hong-Yang Zhang, Rui Chen, Bai-Ling Wang, Ping Ding, Yan Dong, Ming-Ze Sun, Xi-Shan Wu, Yong Xu, Yan Zhang, Jin-Song Liu, Na Wang, Ting-Ting Xu
{"title":"Identification of indoles as potential endogenous ligands of ERRγ and their modulation on drug binding.","authors":"Yuan-Yuan Shuai, Hong-Yang Zhang, Rui Chen, Bai-Ling Wang, Ping Ding, Yan Dong, Ming-Ze Sun, Xi-Shan Wu, Yong Xu, Yan Zhang, Jin-Song Liu, Na Wang, Ting-Ting Xu","doi":"10.1038/s41401-025-01550-6","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen-related receptor γ (ERRγ) is an orphan nuclear receptor in the ERR subfamily that plays a crucial role in regulating energy metabolism. To date, no endogenous ligand has been identified for ERRγ, posing a challenge for developing targeted therapeutics. Here, we identified that indole and skatole produced by the gut microbiota are potential endogenous ligands of ERRγ using biochemical, cellular, structural, and computational approaches. Indole and skatole increased ERRγ thermostability and directly bound to the ligand-binding domain (LBD) with a K<sub>d</sub> of approximately 1-2 μM but had no significant effect or weak inhibitory activity on the transcriptional efficiency. However, RNA sequencing revealed that ERRγ could coregulate several lipid metabolism- and immune-related genes with indole, suggesting a role for ERRγ in the indole pathway. Interestingly, indole and skatole differentially attenuated the activities of ERRγ ligands: they both neutralized the agonistic activity of GSK4716, while indole reduced the antagonistic activity of 4-hydroxytamoxifen (4OHT) and GSK5182, and skatole affected the agonistic activity of endocrine disruptor bisphenol A (BPA). We further screened additional indole metabolites and analogs, resolved the complex structures of ERRγ-LBD with these compounds, and conducted molecular dynamics simulations to determine their binding site and elucidate their binding mechanisms. This study identified potential endogenous ligands of ERRγ, suggesting a novel link between the energy metabolism regulation and the indole pathway. Our findings highlight the need to consider endogenous ligands when designing and optimizing ERRγ-targeted drugs.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01550-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Estrogen-related receptor γ (ERRγ) is an orphan nuclear receptor in the ERR subfamily that plays a crucial role in regulating energy metabolism. To date, no endogenous ligand has been identified for ERRγ, posing a challenge for developing targeted therapeutics. Here, we identified that indole and skatole produced by the gut microbiota are potential endogenous ligands of ERRγ using biochemical, cellular, structural, and computational approaches. Indole and skatole increased ERRγ thermostability and directly bound to the ligand-binding domain (LBD) with a Kd of approximately 1-2 μM but had no significant effect or weak inhibitory activity on the transcriptional efficiency. However, RNA sequencing revealed that ERRγ could coregulate several lipid metabolism- and immune-related genes with indole, suggesting a role for ERRγ in the indole pathway. Interestingly, indole and skatole differentially attenuated the activities of ERRγ ligands: they both neutralized the agonistic activity of GSK4716, while indole reduced the antagonistic activity of 4-hydroxytamoxifen (4OHT) and GSK5182, and skatole affected the agonistic activity of endocrine disruptor bisphenol A (BPA). We further screened additional indole metabolites and analogs, resolved the complex structures of ERRγ-LBD with these compounds, and conducted molecular dynamics simulations to determine their binding site and elucidate their binding mechanisms. This study identified potential endogenous ligands of ERRγ, suggesting a novel link between the energy metabolism regulation and the indole pathway. Our findings highlight the need to consider endogenous ligands when designing and optimizing ERRγ-targeted drugs.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.