Leaving the mark: FMOs as an emerging class of cytokinetic regulators.

IF 3.4 3区 生物学 Q3 CELL BIOLOGY
Léa Lacroix, Eugénie Goupil, Matthew J Smith, Jean-Claude Labbé
{"title":"Leaving the mark: FMOs as an emerging class of cytokinetic regulators.","authors":"Léa Lacroix, Eugénie Goupil, Matthew J Smith, Jean-Claude Labbé","doi":"10.1080/15384101.2025.2485843","DOIUrl":null,"url":null,"abstract":"<p><p>Posttranslational modification of proteins plays a fundamental role in cell biology. It provides cells a means to regulate the signaling, enzymatic or structural properties of proteins without continuous cycles of synthesis and degradation, offering multiple distinct functions to individual proteins in a rapid and reversible manner. Modifications can include phosphorylation, ubiquitination or methylation, which are widespread and simple to detect using current approaches. More challenging to identify, one modification of growing significance is the direct oxidation of cysteine and methionine side chains. Protein oxidation has long been known to occur spontaneously upon the accumulation of cellular reactive oxygen species (ROS), but new data are providing insight into the targeted oxidation of proteins by flavin-containing monooxygenases (FMOs). Here, we review how oxidation of cellular proteins can modulate their activity and consider potential roles for FMOs in the targeted modification of proteins shaping cell division, with a particular focus on two families of FMOs: MICAL and OSGIN.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"1-13"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2025.2485843","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Posttranslational modification of proteins plays a fundamental role in cell biology. It provides cells a means to regulate the signaling, enzymatic or structural properties of proteins without continuous cycles of synthesis and degradation, offering multiple distinct functions to individual proteins in a rapid and reversible manner. Modifications can include phosphorylation, ubiquitination or methylation, which are widespread and simple to detect using current approaches. More challenging to identify, one modification of growing significance is the direct oxidation of cysteine and methionine side chains. Protein oxidation has long been known to occur spontaneously upon the accumulation of cellular reactive oxygen species (ROS), but new data are providing insight into the targeted oxidation of proteins by flavin-containing monooxygenases (FMOs). Here, we review how oxidation of cellular proteins can modulate their activity and consider potential roles for FMOs in the targeted modification of proteins shaping cell division, with a particular focus on two families of FMOs: MICAL and OSGIN.

留下印记:FMOs作为一种新兴的细胞动力学调节剂。
蛋白质的翻译后修饰在细胞生物学中起着重要的作用。它为细胞提供了一种手段来调节蛋白质的信号,酶或结构特性,而不需要连续的合成和降解循环,以快速和可逆的方式为单个蛋白质提供多种不同的功能。修饰可以包括磷酸化、泛素化或甲基化,这些修饰广泛存在,并且使用现有方法易于检测。更具有挑战性的是,一种日益重要的修饰是半胱氨酸和蛋氨酸侧链的直接氧化。长期以来,人们都知道蛋白质氧化是在细胞活性氧(ROS)积累时自发发生的,但新的数据为含黄素单加氧酶(FMOs)对蛋白质的靶向氧化提供了新的见解。在这里,我们回顾了细胞蛋白的氧化如何调节它们的活性,并考虑了FMOs在靶向修饰蛋白质形成细胞分裂中的潜在作用,特别关注了两个FMOs家族:micical和OSGIN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Cycle
Cell Cycle 生物-细胞生物学
CiteScore
7.70
自引率
2.30%
发文量
281
审稿时长
1 months
期刊介绍: Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信