Activity Regulation and Conformation Response of Janus Kinase 3 Mediated by Phosphorylation: Exploration from Correlation Network Analysis and Markov Model.
Jianzhong Chen, Jian Wang, Wanchun Yang, Lu Zhao, Jing Su
{"title":"Activity Regulation and Conformation Response of Janus Kinase 3 Mediated by Phosphorylation: Exploration from Correlation Network Analysis and Markov Model.","authors":"Jianzhong Chen, Jian Wang, Wanchun Yang, Lu Zhao, Jing Su","doi":"10.1021/acs.jcim.5c00096","DOIUrl":null,"url":null,"abstract":"<p><p>The activity of the enzyme JAK3 is modulated by tyrosine phosphorylation, yet the underlying molecular details remain not fully understood. In this study, we employed a GaMD trajectory-based Markov model and correlation network analysis (CNA) to investigate the impact of single phosphorylation (SP) at Y980 (pY980) and double phosphorylation (DP) at Y980/Y981 (pY980/pY981) on the conformational dynamics of JAK3 bound by inhibitors IZA and MI1. The Markov model analysis indicated that both SP and DP result in fewer conformational states and significantly influence the conformational dynamics of the P-loop, αC-helix, and loop1-loop3, while maintaining the hinge region's high rigidity. The CNA findings revealed that phosphorylation alters the communication network among different structural regions of JAK3, providing a rational explanation for how phosphorylation affects the conformational dynamics of the distant P-loop and loop1-loop3. Moreover, the conformational changes mediated by SP and DP further affect the interactions between the inhibitors and the hot spots (L828, V836, E903, Y904, L905, and L956) of JAK3. This work offers valuable theoretical insights into the molecular mechanisms that regulate JAK3 activity.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"4189-4205"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00096","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The activity of the enzyme JAK3 is modulated by tyrosine phosphorylation, yet the underlying molecular details remain not fully understood. In this study, we employed a GaMD trajectory-based Markov model and correlation network analysis (CNA) to investigate the impact of single phosphorylation (SP) at Y980 (pY980) and double phosphorylation (DP) at Y980/Y981 (pY980/pY981) on the conformational dynamics of JAK3 bound by inhibitors IZA and MI1. The Markov model analysis indicated that both SP and DP result in fewer conformational states and significantly influence the conformational dynamics of the P-loop, αC-helix, and loop1-loop3, while maintaining the hinge region's high rigidity. The CNA findings revealed that phosphorylation alters the communication network among different structural regions of JAK3, providing a rational explanation for how phosphorylation affects the conformational dynamics of the distant P-loop and loop1-loop3. Moreover, the conformational changes mediated by SP and DP further affect the interactions between the inhibitors and the hot spots (L828, V836, E903, Y904, L905, and L956) of JAK3. This work offers valuable theoretical insights into the molecular mechanisms that regulate JAK3 activity.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.