Electroacupuncture Attenuates Cerebral Ischemia–Reperfusion Injury by Inhibiting Ferroptosis via the p53/SLC7A11 Pathway

IF 2.9 4区 医学 Q2 Medicine
Ziwen Hou, Yaoyao Liu, Qi Wang, Peng Li
{"title":"Electroacupuncture Attenuates Cerebral Ischemia–Reperfusion Injury by Inhibiting Ferroptosis via the p53/SLC7A11 Pathway","authors":"Ziwen Hou,&nbsp;Yaoyao Liu,&nbsp;Qi Wang,&nbsp;Peng Li","doi":"10.1111/1440-1681.70036","DOIUrl":null,"url":null,"abstract":"<p>Acupuncture has demonstrated efficacy in treating post-stroke complications. Electroacupuncture (EA) ameliorates neurological outcomes in cerebral ischemia models, yet its mechanisms remain unclear. This study investigated EA's role in reducing cerebral ischemia–reperfusion injury (CIRI) in a rat model, focusing on ferroptosis. A CIRI model was established via the MCAO/R method. Rats were randomly assigned to five experimental groups: Sham, MCAO/R, MCAO/R + COTI-2, MCAO/R + EA and MCAO/R + COTI-2 + EA. We evaluated neurological function with Zausinger scoring. 2,3,5-Triphenyltetrazolium chloride (TTC) staining assessed infarct size, while haematoxylin–eosin (HE) staining examined neuronal damage. Transmission electron microscopy analysed mitochondrial changes associated with ferroptosis, and Perl staining measured iron levels in neurons. The biomarkers associated with ferroptosis, including glutathione (GSH), reactive oxygen species (ROS) and malondialdehyde (MDA), were measured. The expression of <i>p53</i>, <i>SLC7A11</i> and <i>GPX4</i> was assessed by qRT-PCR and Western blot. EA enhanced neurological function, reduced the infarct size, alleviated excessive serum iron accumulation, increased antioxidant markers (GSH, GPX4) and decreased lipid peroxidation levels (ROS, MDA), attenuating lipid peroxidation. Additionally, it reversed mitochondrial morphological changes associated with ferroptosis. qRT-PCR and Western blot analyses revealed that EA downregulated <i>p53</i> expression while upregulating <i>SLC7A11</i> and <i>GPX4</i> expression. In summary, ferroptosis was activated after CIRI, and EA ameliorated neurological deficits in cerebral ischemia models by modulating the p53/SLC7A11 axis to counteract oxidative stress-induced ferroptosis, ultimately providing neuroprotective benefits.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"52 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1440-1681.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Acupuncture has demonstrated efficacy in treating post-stroke complications. Electroacupuncture (EA) ameliorates neurological outcomes in cerebral ischemia models, yet its mechanisms remain unclear. This study investigated EA's role in reducing cerebral ischemia–reperfusion injury (CIRI) in a rat model, focusing on ferroptosis. A CIRI model was established via the MCAO/R method. Rats were randomly assigned to five experimental groups: Sham, MCAO/R, MCAO/R + COTI-2, MCAO/R + EA and MCAO/R + COTI-2 + EA. We evaluated neurological function with Zausinger scoring. 2,3,5-Triphenyltetrazolium chloride (TTC) staining assessed infarct size, while haematoxylin–eosin (HE) staining examined neuronal damage. Transmission electron microscopy analysed mitochondrial changes associated with ferroptosis, and Perl staining measured iron levels in neurons. The biomarkers associated with ferroptosis, including glutathione (GSH), reactive oxygen species (ROS) and malondialdehyde (MDA), were measured. The expression of p53, SLC7A11 and GPX4 was assessed by qRT-PCR and Western blot. EA enhanced neurological function, reduced the infarct size, alleviated excessive serum iron accumulation, increased antioxidant markers (GSH, GPX4) and decreased lipid peroxidation levels (ROS, MDA), attenuating lipid peroxidation. Additionally, it reversed mitochondrial morphological changes associated with ferroptosis. qRT-PCR and Western blot analyses revealed that EA downregulated p53 expression while upregulating SLC7A11 and GPX4 expression. In summary, ferroptosis was activated after CIRI, and EA ameliorated neurological deficits in cerebral ischemia models by modulating the p53/SLC7A11 axis to counteract oxidative stress-induced ferroptosis, ultimately providing neuroprotective benefits.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
128
审稿时长
6 months
期刊介绍: Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信