Free Vibration Analysis of a Functionally Graded Magneto-Piezo-Thermoelastic Ceramic-Metal Nanobeam Using Modified Nonlocal State-Space Strain Gradient Theory
IF 1.8 4区 材料科学Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
R. Selvamani, L. Rubine, T. Prabhakaran, M. Yaylaci
{"title":"Free Vibration Analysis of a Functionally Graded Magneto-Piezo-Thermoelastic Ceramic-Metal Nanobeam Using Modified Nonlocal State-Space Strain Gradient Theory","authors":"R. Selvamani, L. Rubine, T. Prabhakaran, M. Yaylaci","doi":"10.1134/S1029959924601258","DOIUrl":null,"url":null,"abstract":"<p>This work studies how the variable nonlocal parameter is related to the material variations across a functionally graded (FG) nanobeam. Hamilton’s principle is used to derive the governing motion equations for a FG nanobeam within the refined higher-order state-space strain gradient theory. The presented formulation is tested numerically via Navier’s solution for a simply supported FG nanobeam. A comparison with the existing published findings is performed to show the precision of results. Furthermore, the effects of the nonlocal parameters of the ceramic and metal parts, as well as temperature, magnetic potential, and electric voltage on the free vibration response are investigated.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"28 2","pages":"263 - 274"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924601258","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This work studies how the variable nonlocal parameter is related to the material variations across a functionally graded (FG) nanobeam. Hamilton’s principle is used to derive the governing motion equations for a FG nanobeam within the refined higher-order state-space strain gradient theory. The presented formulation is tested numerically via Navier’s solution for a simply supported FG nanobeam. A comparison with the existing published findings is performed to show the precision of results. Furthermore, the effects of the nonlocal parameters of the ceramic and metal parts, as well as temperature, magnetic potential, and electric voltage on the free vibration response are investigated.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.