{"title":"Toward imperceptible and robust image watermarking against screen-shooting with dense blocks and CBAM","authors":"Jiamin Wang, Xiaobing Kang, Wei Li, Jing Geng, Yalin Miao, Yajun Chen","doi":"10.1007/s10489-025-06496-0","DOIUrl":null,"url":null,"abstract":"<div><p>In cross-media information communication, it is essential to embed watermarks imperceptibly while also robustly resisting screen- shooting attacks. However, existing robust watermarking methods often struggle to achieve both objectives simultaneously. Therefore, this paper proposes a novel end-to-end screen-shooting resistant image watermarking method based on dense blocks and the convolutional block attention module (CBAM) attention mechanism. In the watermark embedding phase, an encoder that integrates dense connections and CBAM is employed. This approach effectively extracts features from the cover image, enhancing the visual quality of watermarked images while ensuring a certain level of robustness. The noise layer simulated by differentiable function not only contains moiré patterns, illumination, and perspective distortions—factors that significantly impact the screen-shooting process—but also encompasses Gaussian noise, which is commonly present. During the watermark extraction phase, a gradient mask is utilized to guide the encoder in generating watermarked images that facilitate more effective decoding, thereby enabling accurate extraction of the watermark. Ultimately, the robustness is improved by the encoder, the introduced noise layer, and the decoder through joint training. Experimental results demonstrate that the proposed method not only achieves excellent visual quality, with a PSNR value of 36.04 dB for the watermarked images, but also maintains a watermark extraction rate exceeding 95% under various shooting conditions (including different distances, angles, and devices). Notably, the extraction rate reaches 100% at shooting distances of 20 cm and 30 cm, showcasing strong robustness.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06496-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In cross-media information communication, it is essential to embed watermarks imperceptibly while also robustly resisting screen- shooting attacks. However, existing robust watermarking methods often struggle to achieve both objectives simultaneously. Therefore, this paper proposes a novel end-to-end screen-shooting resistant image watermarking method based on dense blocks and the convolutional block attention module (CBAM) attention mechanism. In the watermark embedding phase, an encoder that integrates dense connections and CBAM is employed. This approach effectively extracts features from the cover image, enhancing the visual quality of watermarked images while ensuring a certain level of robustness. The noise layer simulated by differentiable function not only contains moiré patterns, illumination, and perspective distortions—factors that significantly impact the screen-shooting process—but also encompasses Gaussian noise, which is commonly present. During the watermark extraction phase, a gradient mask is utilized to guide the encoder in generating watermarked images that facilitate more effective decoding, thereby enabling accurate extraction of the watermark. Ultimately, the robustness is improved by the encoder, the introduced noise layer, and the decoder through joint training. Experimental results demonstrate that the proposed method not only achieves excellent visual quality, with a PSNR value of 36.04 dB for the watermarked images, but also maintains a watermark extraction rate exceeding 95% under various shooting conditions (including different distances, angles, and devices). Notably, the extraction rate reaches 100% at shooting distances of 20 cm and 30 cm, showcasing strong robustness.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.