Improving structural plausibility in diffusion-based 3D molecule generation via property-conditioned training with distorted molecules†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lucy Vost, Vijil Chenthamarakshan, Payel Das and Charlotte M. Deane
{"title":"Improving structural plausibility in diffusion-based 3D molecule generation via property-conditioned training with distorted molecules†","authors":"Lucy Vost, Vijil Chenthamarakshan, Payel Das and Charlotte M. Deane","doi":"10.1039/D4DD00331D","DOIUrl":null,"url":null,"abstract":"<p >Traditional drug design methods are costly and time-consuming due to their reliance on trial-and-error processes. As a result, computational methods, including diffusion models, designed for molecule generation tasks have gained significant traction. Despite their potential, they have faced criticism for producing physically implausible outputs. As a solution to this problem, we propose a conditional training framework resulting in a model capable of generating molecules of varying and controllable levels of structural plausibility. This framework consists of adding distorted molecules to training datasets, and then annotating each molecule with a label representing the extent of its distortion, and hence its quality. By training the model to distinguish between favourable and unfavourable molecular conformations alongside the standard molecule generation training process, we can selectively sample molecules from the high-quality region of learned space, resulting in improvements in the validity of generated molecules. In addition to the standard two datasets used by molecule generation methods (QM9 and GEOM), we also test our method on a druglike dataset derived from ZINC. We use our conditional method with EDM, the first E(3) equivariant diffusion model for molecule generation, as well as two further models—a more recent diffusion model and a flow matching model—which were built off EDM. We demonstrate improvements in validity as assessed by RDKit parsability and the PoseBusters test suite; more broadly, though, our findings highlight the effectiveness of conditioning methods on low-quality data to improve the sampling of high-quality data.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 4","pages":" 1092-1099"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00331d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00331d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional drug design methods are costly and time-consuming due to their reliance on trial-and-error processes. As a result, computational methods, including diffusion models, designed for molecule generation tasks have gained significant traction. Despite their potential, they have faced criticism for producing physically implausible outputs. As a solution to this problem, we propose a conditional training framework resulting in a model capable of generating molecules of varying and controllable levels of structural plausibility. This framework consists of adding distorted molecules to training datasets, and then annotating each molecule with a label representing the extent of its distortion, and hence its quality. By training the model to distinguish between favourable and unfavourable molecular conformations alongside the standard molecule generation training process, we can selectively sample molecules from the high-quality region of learned space, resulting in improvements in the validity of generated molecules. In addition to the standard two datasets used by molecule generation methods (QM9 and GEOM), we also test our method on a druglike dataset derived from ZINC. We use our conditional method with EDM, the first E(3) equivariant diffusion model for molecule generation, as well as two further models—a more recent diffusion model and a flow matching model—which were built off EDM. We demonstrate improvements in validity as assessed by RDKit parsability and the PoseBusters test suite; more broadly, though, our findings highlight the effectiveness of conditioning methods on low-quality data to improve the sampling of high-quality data.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信