Robotic integration for end-stations at scientific user facilities†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chandima Fernando, Hailey Marcello, Jakub Wlodek, John Sinsheimer, Daniel Olds, Stuart I. Campbell and Phillip M. Maffettone
{"title":"Robotic integration for end-stations at scientific user facilities†","authors":"Chandima Fernando, Hailey Marcello, Jakub Wlodek, John Sinsheimer, Daniel Olds, Stuart I. Campbell and Phillip M. Maffettone","doi":"10.1039/D5DD00036J","DOIUrl":null,"url":null,"abstract":"<p >The integration of robotics and artificial intelligence (AI) into scientific workflows is transforming experimental research, particularly at large-scale user facilities such as the National Synchrotron Light Source II (NSLS-II). We present an extensible architecture for robotic sample management that combines the Robot Operating System 2 (ROS2) with the <em>Bluesky</em> experiment orchestration ecosystem. This approach enabled seamless integration of robotic systems into high-throughput experiments and adaptive workflows. Key innovations included a client-server model for managing robotic actions, real-time pose estimation using fiducial markers and computer vision, and closed-loop adaptive experimentation with agent-driven decision-making. Deployed using widely available hardware and open-source software, this architecture successfully automated a full shift (8 hours) of sample manipulation without errors. The system's flexibility and extensibility allow rapid re-deployment across different experimental environments, enabling scalable self-driving experiments for end stations at scientific user facilities. This work highlights the potential of robotics to enhance experimental throughput and reproducibility, providing a roadmap for future developments in automated scientific discovery where flexibility, extensibility, and adaptability are core requirements.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 4","pages":" 1083-1091"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00036j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00036j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of robotics and artificial intelligence (AI) into scientific workflows is transforming experimental research, particularly at large-scale user facilities such as the National Synchrotron Light Source II (NSLS-II). We present an extensible architecture for robotic sample management that combines the Robot Operating System 2 (ROS2) with the Bluesky experiment orchestration ecosystem. This approach enabled seamless integration of robotic systems into high-throughput experiments and adaptive workflows. Key innovations included a client-server model for managing robotic actions, real-time pose estimation using fiducial markers and computer vision, and closed-loop adaptive experimentation with agent-driven decision-making. Deployed using widely available hardware and open-source software, this architecture successfully automated a full shift (8 hours) of sample manipulation without errors. The system's flexibility and extensibility allow rapid re-deployment across different experimental environments, enabling scalable self-driving experiments for end stations at scientific user facilities. This work highlights the potential of robotics to enhance experimental throughput and reproducibility, providing a roadmap for future developments in automated scientific discovery where flexibility, extensibility, and adaptability are core requirements.

Abstract Image

科学用户设施终端站机器人集成*
将机器人和人工智能(AI)集成到科学工作流程中正在改变实验研究,特别是在国家同步加速器光源II (NSLS-II)等大型用户设施中。我们提出了一个可扩展的机器人样本管理架构,它结合了机器人操作系统2 (ROS2)和蓝天实验编排生态系统。这种方法使机器人系统无缝集成到高通量实验和自适应工作流程中。关键创新包括用于管理机器人动作的客户端-服务器模型,使用基准标记和计算机视觉进行实时姿态估计,以及智能体驱动决策的闭环自适应实验。使用广泛可用的硬件和开源软件,该架构成功地自动化了整个班次(8小时)的样本操作,没有错误。该系统的灵活性和可扩展性允许在不同的实验环境中快速重新部署,为科学用户设施的终端站提供可扩展的自动驾驶实验。这项工作突出了机器人技术在提高实验吞吐量和可重复性方面的潜力,为自动化科学发现的未来发展提供了路线图,其中灵活性、可扩展性和适应性是核心要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信