Trajectory Prediction of Human-Driven Vehicles on the Basis of Risk Field Theory and Interaction Multiple Models

Zhaojie Wang;Guangquan Lu;Jinghua Wang;Haitian Tan;Renjing Tang
{"title":"Trajectory Prediction of Human-Driven Vehicles on the Basis of Risk Field Theory and Interaction Multiple Models","authors":"Zhaojie Wang;Guangquan Lu;Jinghua Wang;Haitian Tan;Renjing Tang","doi":"10.26599/JICV.2024.9210052","DOIUrl":null,"url":null,"abstract":"This study focuses on predicting the motion states and intentions of HDVs at unsignalized intersections. On the basis of a risk field-driven driving behavior model for uncontrolled intersections, multiple motion hypotheses are formulated to characterize the motion planning process of drivers in multivehicle conflict scenarios. Each motion hypothesis is modeled and expressed separately via the extended Kalman filter (EKF) model. These EKF models were combined to construct an interacting multiple model (IMM) framework. This framework estimates which motion hypothesis the driver is more likely to adopt as a strategy. By integrating the predictions of multiple motion hypotheses, more accurate predictions are obtained. Ultimately, it estimates the driver's travel path and acceptable risk level and predicts the spatiotemporal trajectory of HDVs within a future time window.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"8 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10960594","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10960594/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on predicting the motion states and intentions of HDVs at unsignalized intersections. On the basis of a risk field-driven driving behavior model for uncontrolled intersections, multiple motion hypotheses are formulated to characterize the motion planning process of drivers in multivehicle conflict scenarios. Each motion hypothesis is modeled and expressed separately via the extended Kalman filter (EKF) model. These EKF models were combined to construct an interacting multiple model (IMM) framework. This framework estimates which motion hypothesis the driver is more likely to adopt as a strategy. By integrating the predictions of multiple motion hypotheses, more accurate predictions are obtained. Ultimately, it estimates the driver's travel path and acceptable risk level and predicts the spatiotemporal trajectory of HDVs within a future time window.
基于风险场理论和交互多重模型的人驾驶车辆轨迹预测
本研究的重点是在无信号交叉口预测高速公路的运动状态和意图。在风险场驱动的非受控交叉口驾驶行为模型的基础上,建立了多车冲突场景下驾驶员运动规划过程的多运动假设。每个运动假设分别通过扩展卡尔曼滤波(EKF)模型建模和表示。将这些EKF模型组合起来,构建一个交互多模型(IMM)框架。这个框架估计驾驶员更有可能采用哪种运动假设作为策略。通过对多个运动假设的预测进行整合,可以得到更准确的预测结果。最后,它估算驾驶员的行驶路径和可接受的风险水平,并预测未来时间窗内hdv的时空轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信