{"title":"Design and Implementation of Underwater Inductive Power Transfer Systems With An Accurate Eddy Current Loss Model Approach","authors":"Sadjad Shafiei;Seyed Saeid Heidari Yazdi;Adilkhan Kapanov;Mostafa Kermani;Almaz Saukhimov;Arsalan Hekmati;Mehdi Bagheri","doi":"10.1109/TIA.2024.3524480","DOIUrl":null,"url":null,"abstract":"This study analyzes an underwater inductive wireless power transfer (UIWPT) to be used in offshore vehicles. Fixating on inadvertent eddy current losses (ECLs), this study offers an approach to tackle this concern based on the optimal selection of main design parameters of Archimedean magnetic coils. An accurate analytical electromagnetic field model is derived for directly calculating ECLs, and based on the ECL model, the main design parameters of coils are selected. The electrical fundamental components of coils are calculated as a function of the selected design parameters. A numerical metaheuristic optimization method along with the formulation of a multi-objective function and inequality constraints is utilized to estimate the selected parameters of coils. This function addresses various design objectives simultaneously, considering the water medium and inequality constraints. For optimization purposes, an electrical equivalent circuit model is derived, considering the ECLs impact by reflecting these losses in the equivalent circuit model. The ECL model is verified through Finite Element Analysis (FEA). Finally, a laboratory scale setup is developed and UIWPT experiments are conducted to validate the equivalent circuit and analytical modeling, the calculation of components, and the simulation study.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 2","pages":"3359-3370"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10819294/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study analyzes an underwater inductive wireless power transfer (UIWPT) to be used in offshore vehicles. Fixating on inadvertent eddy current losses (ECLs), this study offers an approach to tackle this concern based on the optimal selection of main design parameters of Archimedean magnetic coils. An accurate analytical electromagnetic field model is derived for directly calculating ECLs, and based on the ECL model, the main design parameters of coils are selected. The electrical fundamental components of coils are calculated as a function of the selected design parameters. A numerical metaheuristic optimization method along with the formulation of a multi-objective function and inequality constraints is utilized to estimate the selected parameters of coils. This function addresses various design objectives simultaneously, considering the water medium and inequality constraints. For optimization purposes, an electrical equivalent circuit model is derived, considering the ECLs impact by reflecting these losses in the equivalent circuit model. The ECL model is verified through Finite Element Analysis (FEA). Finally, a laboratory scale setup is developed and UIWPT experiments are conducted to validate the equivalent circuit and analytical modeling, the calculation of components, and the simulation study.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.