Mario Maurelli , Daniela Morale , Stefania Ugolini
{"title":"Well-posedness of a reaction–diffusion model with stochastic dynamical boundary conditions","authors":"Mario Maurelli , Daniela Morale , Stefania Ugolini","doi":"10.1016/j.spa.2025.104646","DOIUrl":null,"url":null,"abstract":"<div><div>We study the well-posedness of a nonlinear reaction diffusion partial differential equation system on the half-line coupled with a stochastic dynamical boundary condition, a random system arising from the description of the chemical reaction of sulphur dioxide with calcium carbonate stones. The boundary condition is given by a Jacobi process, solution to a stochastic differential equation with a mean-reverting drift and a bounded diffusion coefficient. The main result is the global existence and the pathwise uniqueness of mild solutions. The proof relies on a splitting strategy, which allows to deal with the low regularity of the dynamical boundary condition.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"186 ","pages":"Article 104646"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000870","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the well-posedness of a nonlinear reaction diffusion partial differential equation system on the half-line coupled with a stochastic dynamical boundary condition, a random system arising from the description of the chemical reaction of sulphur dioxide with calcium carbonate stones. The boundary condition is given by a Jacobi process, solution to a stochastic differential equation with a mean-reverting drift and a bounded diffusion coefficient. The main result is the global existence and the pathwise uniqueness of mild solutions. The proof relies on a splitting strategy, which allows to deal with the low regularity of the dynamical boundary condition.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.