Yunjing He, Lei Feng, Yujie Gao, Yusu Wang, Chenglu Yang, Siyu Han, Yuke Ren, Yarong Zhai, Ke Nie
{"title":"Huangqin decoction alleviated irinotecan-induced diarrhea by inhibiting endoplasmic reticulum stress through activating AMPK/mTOR-mediated autophagy","authors":"Yunjing He, Lei Feng, Yujie Gao, Yusu Wang, Chenglu Yang, Siyu Han, Yuke Ren, Yarong Zhai, Ke Nie","doi":"10.1016/j.jep.2025.119790","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div>Huangqin decoction (HQD), a traditional Chinese antidiarrheal formula, is effective in treating chemotherapy-induced diarrhea (CID). However, its underlying mechanism has not been fully clarified.</div></div><div><h3>Aim of the study</h3><div>This study aimed to determine whether the underlying mechanism of HQD against CID is related to the activation of AMPK/mTOR-mediated autophagy inhibiting endoplasmic reticulum (ER) stress.</div></div><div><h3>Materials and methods</h3><div>Network pharmacology was used to screen potential targets and pathways. The CID mouse model was induced by intraperitoneal injection of 75 mg/kg irinotecan consecutively for four days. The effectiveness of HQD against CID was evaluated through diarrhea score, intestinal epithelial permeability, etc. The histopathological changes of colon were evaluated by HE staining. Alcian blue and immunofluorescence staining were used to assess mucous layer and the expression of MUC2, TJP-1, Occludin, and LC3, relatively. The level of GRP78 and CHOP was assessed by RT-qPCR and WB. Furthermore, the levels of LC3II/I, Beclin-1, P62, AMPK, p-AMPK, mTOR, p-mTOR were evaluated by WB.</div></div><div><h3>Results</h3><div>Network pharmacology highlighted that the therapeutic effects of HQD against CID may be related to ER stress, autophagy, AMPK, and mTOR signaling pathways, etc. Subsequently, we conducted animal experiments to validate the predicted results. HQD improved CID by attenuating diarrhea, intestinal permeability, etc. HQD could effectively repair intestinal mucous barrier by activating AMPK/mTOR-mediated autophagy to inhibit ER stress.</div></div><div><h3>Conclusion</h3><div>Irinotecan disrupted the intestinal barrier causing diarrhea, while HQD could repair intestinal barrier via inducing AMPK/mTOR-mediated autophagy inhibiting ER stress, thereby exerting therapeutic effects against CID.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"347 ","pages":"Article 119790"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037887412500474X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethnopharmacological relevance
Huangqin decoction (HQD), a traditional Chinese antidiarrheal formula, is effective in treating chemotherapy-induced diarrhea (CID). However, its underlying mechanism has not been fully clarified.
Aim of the study
This study aimed to determine whether the underlying mechanism of HQD against CID is related to the activation of AMPK/mTOR-mediated autophagy inhibiting endoplasmic reticulum (ER) stress.
Materials and methods
Network pharmacology was used to screen potential targets and pathways. The CID mouse model was induced by intraperitoneal injection of 75 mg/kg irinotecan consecutively for four days. The effectiveness of HQD against CID was evaluated through diarrhea score, intestinal epithelial permeability, etc. The histopathological changes of colon were evaluated by HE staining. Alcian blue and immunofluorescence staining were used to assess mucous layer and the expression of MUC2, TJP-1, Occludin, and LC3, relatively. The level of GRP78 and CHOP was assessed by RT-qPCR and WB. Furthermore, the levels of LC3II/I, Beclin-1, P62, AMPK, p-AMPK, mTOR, p-mTOR were evaluated by WB.
Results
Network pharmacology highlighted that the therapeutic effects of HQD against CID may be related to ER stress, autophagy, AMPK, and mTOR signaling pathways, etc. Subsequently, we conducted animal experiments to validate the predicted results. HQD improved CID by attenuating diarrhea, intestinal permeability, etc. HQD could effectively repair intestinal mucous barrier by activating AMPK/mTOR-mediated autophagy to inhibit ER stress.
Conclusion
Irinotecan disrupted the intestinal barrier causing diarrhea, while HQD could repair intestinal barrier via inducing AMPK/mTOR-mediated autophagy inhibiting ER stress, thereby exerting therapeutic effects against CID.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.