Planning strategies in the energy sector: Integrating bayesian neural networks and uncertainty quantification in scenario analysis & optimization

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Funda Iseri , Halil Iseri , Harsh Shah , Eleftherios Iakovou , Efstratios N. Pistikopoulos
{"title":"Planning strategies in the energy sector: Integrating bayesian neural networks and uncertainty quantification in scenario analysis & optimization","authors":"Funda Iseri ,&nbsp;Halil Iseri ,&nbsp;Harsh Shah ,&nbsp;Eleftherios Iakovou ,&nbsp;Efstratios N. Pistikopoulos","doi":"10.1016/j.compchemeng.2025.109097","DOIUrl":null,"url":null,"abstract":"<div><div>The global energy market faces significant challenges due to increasing demand, growing competition, and the ongoing shift toward renewable sources. Addressing these complexities requires advanced methodologies that can effectively navigate uncertainty and optimize investment and operational decisions. This study presents a flexible scenario-based framework for capacity-related decision making and investment planning in energy systems comprising solar, wind, and natural gas facilities. The proposed framework integrates Bayesian Neural Networks (BNNs) into an optimization problem to address uncertainties in energy generation and demand forecasts. By leveraging posterior distributions from BNNs, the framework generates probabilistic, data-driven scenarios that capture future uncertainties. These scenarios are incorporated into a two-stage stochastic multi-period mixed-integer linear optimization model. The first stage optimizes investment decisions for new facilities prior to the realization of uncertainty, while the second stage incorporates operational costs, capacity expansions, and penalties for unmet demand across multiple future scenarios. We present a case study in Texas, demonstrating the applicability of the proposed framework. The results indicate the details on the capacity expansion and investment strategies for natural gas, wind and solar power plants to meet the increasing energy demand in the state. The model accounts for real-world considerations such as construction and expansion lag times, capacity constraints, and scenario-dependent demands. This methodology enhances the flexibility of energy systems, enabling planners to make cost-effective future investments and operational decisions through the complexities of the modern energy landscape. The proposed framework offers significant advantages over traditional methods by capturing nuanced uncertainty distributions and enabling flexible decision-making.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109097"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001012","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The global energy market faces significant challenges due to increasing demand, growing competition, and the ongoing shift toward renewable sources. Addressing these complexities requires advanced methodologies that can effectively navigate uncertainty and optimize investment and operational decisions. This study presents a flexible scenario-based framework for capacity-related decision making and investment planning in energy systems comprising solar, wind, and natural gas facilities. The proposed framework integrates Bayesian Neural Networks (BNNs) into an optimization problem to address uncertainties in energy generation and demand forecasts. By leveraging posterior distributions from BNNs, the framework generates probabilistic, data-driven scenarios that capture future uncertainties. These scenarios are incorporated into a two-stage stochastic multi-period mixed-integer linear optimization model. The first stage optimizes investment decisions for new facilities prior to the realization of uncertainty, while the second stage incorporates operational costs, capacity expansions, and penalties for unmet demand across multiple future scenarios. We present a case study in Texas, demonstrating the applicability of the proposed framework. The results indicate the details on the capacity expansion and investment strategies for natural gas, wind and solar power plants to meet the increasing energy demand in the state. The model accounts for real-world considerations such as construction and expansion lag times, capacity constraints, and scenario-dependent demands. This methodology enhances the flexibility of energy systems, enabling planners to make cost-effective future investments and operational decisions through the complexities of the modern energy landscape. The proposed framework offers significant advantages over traditional methods by capturing nuanced uncertainty distributions and enabling flexible decision-making.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信